mvneta.c 119.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
 *
 * Copyright (C) 2012 Marvell
 *
 * Rami Rosen <rosenr@marvell.com>
 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

14 15
#include <linux/clk.h>
#include <linux/cpu.h>
16
#include <linux/etherdevice.h>
17
#include <linux/if_vlan.h>
18 19
#include <linux/inetdevice.h>
#include <linux/interrupt.h>
20
#include <linux/io.h>
21 22 23 24
#include <linux/kernel.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/netdevice.h>
25
#include <linux/of.h>
26
#include <linux/of_address.h>
27 28 29 30
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/phy.h>
31 32
#include <linux/platform_device.h>
#include <linux/skbuff.h>
33
#include <net/hwbm.h>
34
#include "mvneta_bm.h"
35 36 37
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tso.h>
38 39 40

/* Registers */
#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
41
#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
42 43 44 45
#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
#define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
#define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
46 47 48 49 50 51 52 53 54 55 56 57 58
#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
59 60 61
#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
62 63 64 65 66 67 68 69 70 71 72 73
#define MVNETA_PORT_RX_RESET                    0x1cc0
#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
#define MVNETA_PHY_ADDR                         0x2000
#define      MVNETA_PHY_ADDR_MASK               0x1f
#define MVNETA_MBUS_RETRY                       0x2010
#define MVNETA_UNIT_INTR_CAUSE                  0x2080
#define MVNETA_UNIT_CONTROL                     0x20B0
#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
#define MVNETA_BASE_ADDR_ENABLE                 0x2290
74
#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
#define MVNETA_PORT_CONFIG                      0x2400
#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
						 MVNETA_DEF_RXQ_ARP(q)	 | \
						 MVNETA_DEF_RXQ_TCP(q)	 | \
						 MVNETA_DEF_RXQ_UDP(q)	 | \
						 MVNETA_DEF_RXQ_BPDU(q)	 | \
						 MVNETA_TX_UNSET_ERR_SUM | \
						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
#define MVNETA_PORT_CONFIG_EXTEND                0x2404
#define MVNETA_MAC_ADDR_LOW                      0x2414
#define MVNETA_MAC_ADDR_HIGH                     0x2418
#define MVNETA_SDMA_CONFIG                       0x241c
#define      MVNETA_SDMA_BRST_SIZE_16            4
#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
99
#define      MVNETA_DESC_SWAP                    BIT(6)
100 101 102 103 104
#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
#define MVNETA_PORT_STATUS                       0x2444
#define      MVNETA_TX_IN_PRGRS                  BIT(1)
#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
105
#define MVNETA_SERDES_CFG			 0x24A0
106
#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
107
#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
108 109 110 111 112 113
#define MVNETA_TYPE_PRIO                         0x24bc
#define      MVNETA_FORCE_UNI                    BIT(21)
#define MVNETA_TXQ_CMD_1                         0x24e4
#define MVNETA_TXQ_CMD                           0x2448
#define      MVNETA_TXQ_DISABLE_SHIFT            8
#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
114 115
#define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
#define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
116 117
#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
118
#define MVNETA_ACC_MODE                          0x2500
119
#define MVNETA_BM_ADDRESS                        0x2504
120 121 122
#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
123
#define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
124
#define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
125
#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
126

127 128 129 130 131 132 133
/* Exception Interrupt Port/Queue Cause register
 *
 * Their behavior depend of the mapping done using the PCPX2Q
 * registers. For a given CPU if the bit associated to a queue is not
 * set, then for the register a read from this CPU will always return
 * 0 and a write won't do anything
 */
134

135 136
#define MVNETA_INTR_NEW_CAUSE                    0x25a0
#define MVNETA_INTR_NEW_MASK                     0x25a4
137 138 139 140 141 142 143 144 145 146 147 148

/* bits  0..7  = TXQ SENT, one bit per queue.
 * bits  8..15 = RXQ OCCUP, one bit per queue.
 * bits 16..23 = RXQ FREE, one bit per queue.
 * bit  29 = OLD_REG_SUM, see old reg ?
 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 * bit  31 = MISC_SUM,   one bit for 4 ports
 */
#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
149
#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
150

151 152
#define MVNETA_INTR_OLD_CAUSE                    0x25a8
#define MVNETA_INTR_OLD_MASK                     0x25ac
153 154

/* Data Path Port/Queue Cause Register */
155 156
#define MVNETA_INTR_MISC_CAUSE                   0x25b0
#define MVNETA_INTR_MISC_MASK                    0x25b4
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
#define      MVNETA_CAUSE_PTP                    BIT(4)

#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)

#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))

#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))

179 180
#define MVNETA_INTR_ENABLE                       0x25b8
#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
181
#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
182

183 184 185 186 187 188 189 190 191 192
#define MVNETA_RXQ_CMD                           0x2680
#define      MVNETA_RXQ_DISABLE_SHIFT            8
#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
#define MVNETA_GMAC_CTRL_0                       0x2c00
#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
#define MVNETA_GMAC_CTRL_2                       0x2c08
193
#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
194
#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
#define MVNETA_GMAC_STATUS                       0x2c10
#define      MVNETA_GMAC_LINK_UP                 BIT(0)
#define      MVNETA_GMAC_SPEED_1000              BIT(1)
#define      MVNETA_GMAC_SPEED_100               BIT(2)
#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
209
#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
210 211
#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
212
#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
213
#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
214
#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
215
#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
216
#define MVNETA_MIB_COUNTERS_BASE                 0x3000
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
#define      MVNETA_MIB_LATE_COLLISION           0x7c
#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
#define MVNETA_DA_FILT_UCAST_BASE                0x3600
#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
#define MVNETA_PORT_TX_RESET                     0x3cf0
#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
#define MVNETA_TX_MTU                            0x3e0c
#define MVNETA_TX_TOKEN_SIZE                     0x3e14
#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff

#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff

/* Descriptor ring Macros */
#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
	(((index) < (q)->last_desc) ? ((index) + 1) : 0)

/* Various constants */

/* Coalescing */
247
#define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
248 249 250
#define MVNETA_RX_COAL_PKTS		32
#define MVNETA_RX_COAL_USEC		100

251
/* The two bytes Marvell header. Either contains a special value used
252 253 254 255 256 257 258 259 260 261 262
 * by Marvell switches when a specific hardware mode is enabled (not
 * supported by this driver) or is filled automatically by zeroes on
 * the RX side. Those two bytes being at the front of the Ethernet
 * header, they allow to have the IP header aligned on a 4 bytes
 * boundary automatically: the hardware skips those two bytes on its
 * own.
 */
#define MVNETA_MH_SIZE			2

#define MVNETA_VLAN_TAG_LEN             4

263
#define MVNETA_TX_CSUM_DEF_SIZE		1600
264
#define MVNETA_TX_CSUM_MAX_SIZE		9800
265 266 267 268
#define MVNETA_ACC_MODE_EXT1		1
#define MVNETA_ACC_MODE_EXT2		2

#define MVNETA_MAX_DECODE_WIN		6
269 270 271 272 273 274 275 276

/* Timeout constants */
#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000

#define MVNETA_TX_MTU_MAX		0x3ffff

277 278 279 280 281
/* The RSS lookup table actually has 256 entries but we do not use
 * them yet
 */
#define MVNETA_RSS_LU_TABLE_SIZE	1

282 283 284
/* TSO header size */
#define TSO_HEADER_SIZE 128

285 286 287 288 289 290
/* Max number of Rx descriptors */
#define MVNETA_MAX_RXD 128

/* Max number of Tx descriptors */
#define MVNETA_MAX_TXD 532

291 292 293 294 295
/* Max number of allowed TCP segments for software TSO */
#define MVNETA_MAX_TSO_SEGS 100

#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)

296 297 298
/* descriptor aligned size */
#define MVNETA_DESC_ALIGNED_SIZE	32

299 300 301 302 303 304
/* Number of bytes to be taken into account by HW when putting incoming data
 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
 */
#define MVNETA_RX_PKT_OFFSET_CORRECTION		64

305 306 307
#define MVNETA_RX_PKT_SIZE(mtu) \
	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
	      ETH_HLEN + ETH_FCS_LEN,			     \
308
	      cache_line_size())
309

310 311 312 313
#define IS_TSO_HEADER(txq, addr) \
	((addr >= txq->tso_hdrs_phys) && \
	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))

314 315
#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
316

R
Russell King 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
struct mvneta_statistic {
	unsigned short offset;
	unsigned short type;
	const char name[ETH_GSTRING_LEN];
};

#define T_REG_32	32
#define T_REG_64	64

static const struct mvneta_statistic mvneta_statistics[] = {
	{ 0x3000, T_REG_64, "good_octets_received", },
	{ 0x3010, T_REG_32, "good_frames_received", },
	{ 0x3008, T_REG_32, "bad_octets_received", },
	{ 0x3014, T_REG_32, "bad_frames_received", },
	{ 0x3018, T_REG_32, "broadcast_frames_received", },
	{ 0x301c, T_REG_32, "multicast_frames_received", },
	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
	{ 0x3058, T_REG_32, "good_fc_received", },
	{ 0x305c, T_REG_32, "bad_fc_received", },
	{ 0x3060, T_REG_32, "undersize_received", },
	{ 0x3064, T_REG_32, "fragments_received", },
	{ 0x3068, T_REG_32, "oversize_received", },
	{ 0x306c, T_REG_32, "jabber_received", },
	{ 0x3070, T_REG_32, "mac_receive_error", },
	{ 0x3074, T_REG_32, "bad_crc_event", },
	{ 0x3078, T_REG_32, "collision", },
	{ 0x307c, T_REG_32, "late_collision", },
	{ 0x2484, T_REG_32, "rx_discard", },
	{ 0x2488, T_REG_32, "rx_overrun", },
	{ 0x3020, T_REG_32, "frames_64_octets", },
	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
	{ 0x3038, T_REG_64, "good_octets_sent", },
	{ 0x3040, T_REG_32, "good_frames_sent", },
	{ 0x3044, T_REG_32, "excessive_collision", },
	{ 0x3048, T_REG_32, "multicast_frames_sent", },
	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
	{ 0x3054, T_REG_32, "fc_sent", },
	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
};

361
struct mvneta_pcpu_stats {
362
	struct	u64_stats_sync syncp;
363 364 365 366
	u64	rx_packets;
	u64	rx_bytes;
	u64	tx_packets;
	u64	tx_bytes;
367 368
};

369 370 371 372 373 374 375 376 377 378 379
struct mvneta_pcpu_port {
	/* Pointer to the shared port */
	struct mvneta_port	*pp;

	/* Pointer to the CPU-local NAPI struct */
	struct napi_struct	napi;

	/* Cause of the previous interrupt */
	u32			cause_rx_tx;
};

380
struct mvneta_port {
381
	u8 id;
382 383 384
	struct mvneta_pcpu_port __percpu	*ports;
	struct mvneta_pcpu_stats __percpu	*stats;

385
	int pkt_size;
386
	unsigned int frag_size;
387 388 389 390
	void __iomem *base;
	struct mvneta_rx_queue *rxqs;
	struct mvneta_tx_queue *txqs;
	struct net_device *dev;
391 392
	struct hlist_node node_online;
	struct hlist_node node_dead;
393
	int rxq_def;
394 395 396 397
	/* Protect the access to the percpu interrupt registers,
	 * ensuring that the configuration remains coherent.
	 */
	spinlock_t lock;
398
	bool is_stopped;
399

400 401 402
	u32 cause_rx_tx;
	struct napi_struct napi;

403
	/* Core clock */
T
Thomas Petazzoni 已提交
404
	struct clk *clk;
405 406
	/* AXI clock */
	struct clk *clk_bus;
407 408 409 410 411 412 413 414 415 416
	u8 mcast_count[256];
	u16 tx_ring_size;
	u16 rx_ring_size;

	struct mii_bus *mii_bus;
	phy_interface_t phy_interface;
	struct device_node *phy_node;
	unsigned int link;
	unsigned int duplex;
	unsigned int speed;
417
	unsigned int tx_csum_limit;
418
	unsigned int use_inband_status:1;
R
Russell King 已提交
419

420 421 422 423 424
	struct mvneta_bm *bm_priv;
	struct mvneta_bm_pool *pool_long;
	struct mvneta_bm_pool *pool_short;
	int bm_win_id;

R
Russell King 已提交
425
	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
426 427

	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
428 429 430

	/* Flags for special SoC configurations */
	bool neta_armada3700;
431
	u16 rx_offset_correction;
432 433
};

434
/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
435 436 437
 * layout of the transmit and reception DMA descriptors, and their
 * layout is therefore defined by the hardware design
 */
438

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
#define MVNETA_TX_L3_OFF_SHIFT	0
#define MVNETA_TX_IP_HLEN_SHIFT	8
#define MVNETA_TX_L4_UDP	BIT(16)
#define MVNETA_TX_L3_IP6	BIT(17)
#define MVNETA_TXD_IP_CSUM	BIT(18)
#define MVNETA_TXD_Z_PAD	BIT(19)
#define MVNETA_TXD_L_DESC	BIT(20)
#define MVNETA_TXD_F_DESC	BIT(21)
#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
				 MVNETA_TXD_L_DESC | \
				 MVNETA_TXD_F_DESC)
#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
#define MVNETA_TX_L4_CSUM_NOT	BIT(31)

#define MVNETA_RXD_ERR_CRC		0x0
454 455
#define MVNETA_RXD_BM_POOL_SHIFT	13
#define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
456 457 458 459 460 461 462 463 464
#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
#define MVNETA_RXD_ERR_LEN		BIT(18)
#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
#define MVNETA_RXD_L3_IP4		BIT(25)
#define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
#define MVNETA_RXD_L4_CSUM_OK		BIT(30)

465
#if defined(__LITTLE_ENDIAN)
466 467 468 469 470 471 472 473 474 475 476
struct mvneta_tx_desc {
	u32  command;		/* Options used by HW for packet transmitting.*/
	u16  reserverd1;	/* csum_l4 (for future use)		*/
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u32  status;		/* Info about received packet		*/
477 478
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u16  data_size;		/* Size of received packet in bytes	*/
479

480 481
	u32  buf_phys_addr;	/* Physical address of the buffer	*/
	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
482

483 484 485
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
486

487 488 489
	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
#else
struct mvneta_tx_desc {
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u16  reserverd1;	/* csum_l4 (for future use)		*/
	u32  command;		/* Options used by HW for packet transmitting.*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u16  data_size;		/* Size of received packet in bytes	*/
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u32  status;		/* Info about received packet		*/

	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
	u32  buf_phys_addr;	/* Physical address of the buffer	*/

	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */

	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
#endif
516 517 518 519 520 521 522 523 524

struct mvneta_tx_queue {
	/* Number of this TX queue, in the range 0-7 */
	u8 id;

	/* Number of TX DMA descriptors in the descriptor ring */
	int size;

	/* Number of currently used TX DMA descriptor in the
525 526
	 * descriptor ring
	 */
527
	int count;
528 529
	int tx_stop_threshold;
	int tx_wake_threshold;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

	/* Array of transmitted skb */
	struct sk_buff **tx_skb;

	/* Index of last TX DMA descriptor that was inserted */
	int txq_put_index;

	/* Index of the TX DMA descriptor to be cleaned up */
	int txq_get_index;

	u32 done_pkts_coal;

	/* Virtual address of the TX DMA descriptors array */
	struct mvneta_tx_desc *descs;

	/* DMA address of the TX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last TX DMA descriptor */
	int last_desc;

	/* Index of the next TX DMA descriptor to process */
	int next_desc_to_proc;
553 554 555 556 557 558

	/* DMA buffers for TSO headers */
	char *tso_hdrs;

	/* DMA address of TSO headers */
	dma_addr_t tso_hdrs_phys;
559 560 561

	/* Affinity mask for CPUs*/
	cpumask_t affinity_mask;
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
};

struct mvneta_rx_queue {
	/* rx queue number, in the range 0-7 */
	u8 id;

	/* num of rx descriptors in the rx descriptor ring */
	int size;

	/* counter of times when mvneta_refill() failed */
	int missed;

	u32 pkts_coal;
	u32 time_coal;

577 578 579
	/* Virtual address of the RX buffer */
	void  **buf_virt_addr;

580 581 582 583 584 585 586 587 588 589 590 591 592
	/* Virtual address of the RX DMA descriptors array */
	struct mvneta_rx_desc *descs;

	/* DMA address of the RX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last RX DMA descriptor */
	int last_desc;

	/* Index of the next RX DMA descriptor to process */
	int next_desc_to_proc;
};

593
static enum cpuhp_state online_hpstate;
594 595 596
/* The hardware supports eight (8) rx queues, but we are only allowing
 * the first one to be used. Therefore, let's just allocate one queue.
 */
597
static int rxq_number = 8;
598 599 600 601
static int txq_number = 8;

static int rxq_def;

602 603
static int rx_copybreak __read_mostly = 256;

604 605 606
/* HW BM need that each port be identify by a unique ID */
static int global_port_id;

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
#define MVNETA_DRIVER_NAME "mvneta"
#define MVNETA_DRIVER_VERSION "1.0"

/* Utility/helper methods */

/* Write helper method */
static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
{
	writel(data, pp->base + offset);
}

/* Read helper method */
static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
{
	return readl(pp->base + offset);
}

/* Increment txq get counter */
static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
{
	txq->txq_get_index++;
	if (txq->txq_get_index == txq->size)
		txq->txq_get_index = 0;
}

/* Increment txq put counter */
static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
{
	txq->txq_put_index++;
	if (txq->txq_put_index == txq->size)
		txq->txq_put_index = 0;
}


/* Clear all MIB counters */
static void mvneta_mib_counters_clear(struct mvneta_port *pp)
{
	int i;
	u32 dummy;

	/* Perform dummy reads from MIB counters */
	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
650 651
	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
652 653 654
}

/* Get System Network Statistics */
655 656 657
static struct rtnl_link_stats64 *
mvneta_get_stats64(struct net_device *dev,
		   struct rtnl_link_stats64 *stats)
658 659 660
{
	struct mvneta_port *pp = netdev_priv(dev);
	unsigned int start;
661
	int cpu;
662

663 664 665 666 667 668
	for_each_possible_cpu(cpu) {
		struct mvneta_pcpu_stats *cpu_stats;
		u64 rx_packets;
		u64 rx_bytes;
		u64 tx_packets;
		u64 tx_bytes;
669

670 671
		cpu_stats = per_cpu_ptr(pp->stats, cpu);
		do {
672
			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
673 674 675 676
			rx_packets = cpu_stats->rx_packets;
			rx_bytes   = cpu_stats->rx_bytes;
			tx_packets = cpu_stats->tx_packets;
			tx_bytes   = cpu_stats->tx_bytes;
677
		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
678

679 680 681 682 683
		stats->rx_packets += rx_packets;
		stats->rx_bytes   += rx_bytes;
		stats->tx_packets += tx_packets;
		stats->tx_bytes   += tx_bytes;
	}
684 685 686 687 688 689 690 691 692 693 694

	stats->rx_errors	= dev->stats.rx_errors;
	stats->rx_dropped	= dev->stats.rx_dropped;

	stats->tx_dropped	= dev->stats.tx_dropped;

	return stats;
}

/* Rx descriptors helper methods */

695 696
/* Checks whether the RX descriptor having this status is both the first
 * and the last descriptor for the RX packet. Each RX packet is currently
697 698 699
 * received through a single RX descriptor, so not having each RX
 * descriptor with its first and last bits set is an error
 */
700
static int mvneta_rxq_desc_is_first_last(u32 status)
701
{
702
	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
703 704 705 706 707 708 709 710 711
		MVNETA_RXD_FIRST_LAST_DESC;
}

/* Add number of descriptors ready to receive new packets */
static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
					  struct mvneta_rx_queue *rxq,
					  int ndescs)
{
	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
712 713
	 * be added at once
	 */
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
	}

	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
}

/* Get number of RX descriptors occupied by received packets */
static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
					struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
}

735
/* Update num of rx desc called upon return from rx path or
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
 * from mvneta_rxq_drop_pkts().
 */
static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
				       struct mvneta_rx_queue *rxq,
				       int rx_done, int rx_filled)
{
	u32 val;

	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
		val = rx_done |
		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
		return;
	}

	/* Only 255 descriptors can be added at once */
	while ((rx_done > 0) || (rx_filled > 0)) {
		if (rx_done <= 0xff) {
			val = rx_done;
			rx_done = 0;
		} else {
			val = 0xff;
			rx_done -= 0xff;
		}
		if (rx_filled <= 0xff) {
			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled = 0;
		} else {
			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled -= 0xff;
		}
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
	}
}

/* Get pointer to next RX descriptor to be processed by SW */
static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
{
	int rx_desc = rxq->next_desc_to_proc;

	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
778
	prefetch(rxq->descs + rxq->next_desc_to_proc);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	return rxq->descs + rx_desc;
}

/* Change maximum receive size of the port. */
static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
{
	u32 val;

	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}


/* Set rx queue offset */
static void mvneta_rxq_offset_set(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq,
				  int offset)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;

	/* Offset is in */
	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}


/* Tx descriptors helper methods */

/* Update HW with number of TX descriptors to be sent */
static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int pend_desc)
{
	u32 val;

	/* Only 255 descriptors can be added at once ; Assume caller
821 822
	 * process TX desriptors in quanta less than 256
	 */
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	val = pend_desc;
	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}

/* Get pointer to next TX descriptor to be processed (send) by HW */
static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
{
	int tx_desc = txq->next_desc_to_proc;

	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
	return txq->descs + tx_desc;
}

/* Release the last allocated TX descriptor. Useful to handle DMA
838 839
 * mapping failures in the TX path.
 */
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
{
	if (txq->next_desc_to_proc == 0)
		txq->next_desc_to_proc = txq->last_desc - 1;
	else
		txq->next_desc_to_proc--;
}

/* Set rxq buf size */
static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq,
				    int buf_size)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));

	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
}

/* Disable buffer management (BM) */
static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/* Enable buffer management (BM) */
static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val |= MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Notify HW about port's assignment of pool for bigger packets */
static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
				     struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Notify HW about port's assignment of pool for smaller packets */
static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
				      struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Set port's receive buffer size for assigned BM pool */
static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
					      int buf_size,
					      u8 pool_id)
{
	u32 val;

	if (!IS_ALIGNED(buf_size, 8)) {
		dev_warn(pp->dev->dev.parent,
			 "illegal buf_size value %d, round to %d\n",
			 buf_size, ALIGN(buf_size, 8));
		buf_size = ALIGN(buf_size, 8);
	}

	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
}

/* Configure MBUS window in order to enable access BM internal SRAM */
static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
				  u8 target, u8 attr)
{
	u32 win_enable, win_protect;
	int i;

	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);

	if (pp->bm_win_id < 0) {
		/* Find first not occupied window */
		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
			if (win_enable & (1 << i)) {
				pp->bm_win_id = i;
				break;
			}
		}
		if (i == MVNETA_MAX_DECODE_WIN)
			return -ENOMEM;
	} else {
		i = pp->bm_win_id;
	}

	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

	if (i < 4)
		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);

	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
		    (attr << 8) | target);

	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);

	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
	win_protect |= 3 << (2 * i);
	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);

	win_enable &= ~(1 << i);
	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);

	return 0;
}

974
static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
975
{
976
	u32 wsize;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	u8 target, attr;
	int err;

	/* Get BM window information */
	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
					 &target, &attr);
	if (err < 0)
		return err;

	pp->bm_win_id = -1;

	/* Open NETA -> BM window */
	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
				     target, attr);
	if (err < 0) {
		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
		return err;
	}
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	return 0;
}

/* Assign and initialize pools for port. In case of fail
 * buffer manager will remain disabled for current port.
 */
static int mvneta_bm_port_init(struct platform_device *pdev,
			       struct mvneta_port *pp)
{
	struct device_node *dn = pdev->dev.of_node;
	u32 long_pool_id, short_pool_id;

	if (!pp->neta_armada3700) {
		int ret;

		ret = mvneta_bm_port_mbus_init(pp);
		if (ret)
			return ret;
	}
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
		netdev_info(pp->dev, "missing long pool id\n");
		return -EINVAL;
	}

	/* Create port's long pool depending on mtu */
	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
					   MVNETA_BM_LONG, pp->id,
					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
	if (!pp->pool_long) {
		netdev_info(pp->dev, "fail to obtain long pool for port\n");
		return -ENOMEM;
	}

	pp->pool_long->port_map |= 1 << pp->id;

	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
				   pp->pool_long->id);

	/* If short pool id is not defined, assume using single pool */
	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
		short_pool_id = long_pool_id;

	/* Create port's short pool */
	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
					    MVNETA_BM_SHORT, pp->id,
					    MVNETA_BM_SHORT_PKT_SIZE);
	if (!pp->pool_short) {
		netdev_info(pp->dev, "fail to obtain short pool for port\n");
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		return -ENOMEM;
	}

	if (short_pool_id != long_pool_id) {
		pp->pool_short->port_map |= 1 << pp->id;
		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
					   pp->pool_short->id);
	}

	return 0;
}

/* Update settings of a pool for bigger packets */
static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
{
	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1061
	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1062 1063 1064 1065
	int num;

	/* Release all buffers from long pool */
	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1066
	if (hwbm_pool->buf_num) {
1067 1068 1069 1070 1071 1072 1073
		WARN(1, "cannot free all buffers in pool %d\n",
		     bm_pool->id);
		goto bm_mtu_err;
	}

	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1074 1075
	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1076 1077

	/* Fill entire long pool */
1078 1079
	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
	if (num != hwbm_pool->size) {
1080
		WARN(1, "pool %d: %d of %d allocated\n",
1081
		     bm_pool->id, num, hwbm_pool->size);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
		goto bm_mtu_err;
	}
	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);

	return;

bm_mtu_err:
	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);

	pp->bm_priv = NULL;
	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
/* Start the Ethernet port RX and TX activity */
static void mvneta_port_up(struct mvneta_port *pp)
{
	int queue;
	u32 q_map;

	/* Enable all initialized TXs. */
	q_map = 0;
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		if (txq->descs != NULL)
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);

	/* Enable all initialized RXQs. */
1113 1114 1115 1116 1117 1118 1119
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];

		if (rxq->descs != NULL)
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
}

/* Stop the Ethernet port activity */
static void mvneta_port_down(struct mvneta_port *pp)
{
	u32 val;
	int count;

	/* Stop Rx port activity. Check port Rx activity. */
	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;

	/* Issue stop command for active channels only */
	if (val != 0)
		mvreg_write(pp, MVNETA_RXQ_CMD,
			    val << MVNETA_RXQ_DISABLE_SHIFT);

	/* Wait for all Rx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
1141
				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1142 1143 1144 1145 1146 1147
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1148
	} while (val & MVNETA_RXQ_ENABLE_MASK);
1149 1150

	/* Stop Tx port activity. Check port Tx activity. Issue stop
1151 1152
	 * command for active channels only
	 */
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;

	if (val != 0)
		mvreg_write(pp, MVNETA_TXQ_CMD,
			    (val << MVNETA_TXQ_DISABLE_SHIFT));

	/* Wait for all Tx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
				    "TIMEOUT for TX stopped status=0x%08x\n",
				    val);
			break;
		}
		mdelay(1);

		/* Check TX Command reg that all Txqs are stopped */
		val = mvreg_read(pp, MVNETA_TXQ_CMD);

1173
	} while (val & MVNETA_TXQ_ENABLE_MASK);
1174 1175 1176 1177 1178 1179

	/* Double check to verify that TX FIFO is empty */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
			netdev_warn(pp->dev,
1180
				    "TX FIFO empty timeout status=0x%08x\n",
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_PORT_STATUS);
	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
		 (val & MVNETA_TX_IN_PRGRS));

	udelay(200);
}

/* Enable the port by setting the port enable bit of the MAC control register */
static void mvneta_port_enable(struct mvneta_port *pp)
{
	u32 val;

	/* Enable port */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val |= MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}

/* Disable the port and wait for about 200 usec before retuning */
static void mvneta_port_disable(struct mvneta_port *pp)
{
	u32 val;

	/* Reset the Enable bit in the Serial Control Register */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);

	udelay(200);
}

/* Multicast tables methods */

/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
}

/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);

}

/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
		val = 0;
	} else {
		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
{
	u32 val;

	if (enable) {
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
			 MVNETA_GMAC_FORCE_LINK_DOWN |
			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
		       MVNETA_GMAC_AN_SPEED_EN |
		       MVNETA_GMAC_AN_DUPLEX_EN;
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);

		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);

		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
	} else {
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
		       MVNETA_GMAC_AN_SPEED_EN |
		       MVNETA_GMAC_AN_DUPLEX_EN);
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);

		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);

		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
	}
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static void mvneta_percpu_unmask_interrupt(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are unmasked, but actually only the ones
	 * mapped to this CPU will be unmasked
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
		    MVNETA_RX_INTR_MASK_ALL |
		    MVNETA_TX_INTR_MASK_ALL |
		    MVNETA_MISCINTR_INTR_MASK);
}

static void mvneta_percpu_mask_interrupt(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are masked, but actually only the ones
	 * mapped to this CPU will be masked
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
}

static void mvneta_percpu_clear_intr_cause(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are cleared, but actually only the ones
	 * mapped to this CPU will be cleared
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
/* This method sets defaults to the NETA port:
 *	Clears interrupt Cause and Mask registers.
 *	Clears all MAC tables.
 *	Sets defaults to all registers.
 *	Resets RX and TX descriptor rings.
 *	Resets PHY.
 * This method can be called after mvneta_port_down() to return the port
 *	settings to defaults.
 */
static void mvneta_defaults_set(struct mvneta_port *pp)
{
	int cpu;
	int queue;
	u32 val;
1362
	int max_cpu = num_present_cpus();
1363 1364

	/* Clear all Cause registers */
1365
	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1366 1367

	/* Mask all interrupts */
1368
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1369 1370 1371 1372 1373
	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);

	/* Enable MBUS Retry bit16 */
	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);

1374 1375 1376 1377
	/* Set CPU queue access map. CPUs are assigned to the RX and
	 * TX queues modulo their number. If there is only one TX
	 * queue then it is assigned to the CPU associated to the
	 * default RX queue.
1378
	 */
1379 1380
	for_each_present_cpu(cpu) {
		int rxq_map = 0, txq_map = 0;
1381
		int rxq, txq;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		if (!pp->neta_armada3700) {
			for (rxq = 0; rxq < rxq_number; rxq++)
				if ((rxq % max_cpu) == cpu)
					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);

			for (txq = 0; txq < txq_number; txq++)
				if ((txq % max_cpu) == cpu)
					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);

			/* With only one TX queue we configure a special case
			 * which will allow to get all the irq on a single
			 * CPU
			 */
			if (txq_number == 1)
				txq_map = (cpu == pp->rxq_def) ?
					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1398

1399 1400 1401 1402
		} else {
			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
		}
1403 1404 1405

		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
	}
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

	/* Reset RX and TX DMAs */
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);

	/* Disable Legacy WRR, Disable EJP, Release from reset */
	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
	for (queue = 0; queue < txq_number; queue++) {
		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
	}

	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);

	/* Set Port Acceleration Mode */
1422 1423 1424 1425 1426 1427
	if (pp->bm_priv)
		/* HW buffer management + legacy parser */
		val = MVNETA_ACC_MODE_EXT2;
	else
		/* SW buffer management + legacy parser */
		val = MVNETA_ACC_MODE_EXT1;
1428 1429
	mvreg_write(pp, MVNETA_ACC_MODE, val);

1430 1431 1432
	if (pp->bm_priv)
		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);

1433
	/* Update val of portCfg register accordingly with all RxQueue types */
1434
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	val = 0;
	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);

	/* Build PORT_SDMA_CONFIG_REG */
	val = 0;

	/* Default burst size */
	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1447
	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1448

1449 1450 1451
#if defined(__BIG_ENDIAN)
	val |= MVNETA_DESC_SWAP;
#endif
1452 1453 1454 1455

	/* Assign port SDMA configuration */
	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);

1456 1457 1458 1459 1460 1461 1462
	/* Disable PHY polling in hardware, since we're using the
	 * kernel phylib to do this.
	 */
	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
	val &= ~MVNETA_PHY_POLLING_ENABLE;
	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);

1463
	mvneta_set_autoneg(pp, pp->use_inband_status);
1464 1465 1466 1467 1468 1469 1470 1471
	mvneta_set_ucast_table(pp, -1);
	mvneta_set_special_mcast_table(pp, -1);
	mvneta_set_other_mcast_table(pp, -1);

	/* Set port interrupt enable register - default enable all */
	mvreg_write(pp, MVNETA_INTR_ENABLE,
		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1472 1473

	mvneta_mib_counters_clear(pp);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
}

/* Set max sizes for tx queues */
static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)

{
	u32 val, size, mtu;
	int queue;

	mtu = max_tx_size * 8;
	if (mtu > MVNETA_TX_MTU_MAX)
		mtu = MVNETA_TX_MTU_MAX;

	/* Set MTU */
	val = mvreg_read(pp, MVNETA_TX_MTU);
	val &= ~MVNETA_TX_MTU_MAX;
	val |= mtu;
	mvreg_write(pp, MVNETA_TX_MTU, val);

	/* TX token size and all TXQs token size must be larger that MTU */
	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);

	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
	if (size < mtu) {
		size = mtu;
		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
		val |= size;
		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
	}
	for (queue = 0; queue < txq_number; queue++) {
		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));

		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
		if (size < mtu) {
			size = mtu;
			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
			val |= size;
			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
		}
	}
}

/* Set unicast address */
static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
				  int queue)
{
	unsigned int unicast_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Locate the Unicast table entry */
	last_nibble = (0xf & last_nibble);

	/* offset from unicast tbl base */
	tbl_offset = (last_nibble / 4) * 4;

	/* offset within the above reg  */
	reg_offset = last_nibble % 4;

	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));

	if (queue == -1) {
		/* Clear accepts frame bit at specified unicast DA tbl entry */
		unicast_reg &= ~(0xff << (8 * reg_offset));
	} else {
		unicast_reg &= ~(0xff << (8 * reg_offset));
		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
}

/* Set mac address */
static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
				int queue)
{
	unsigned int mac_h;
	unsigned int mac_l;

	if (queue != -1) {
		mac_l = (addr[4] << 8) | (addr[5]);
		mac_h = (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | (addr[3] << 0);

		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
	}

	/* Accept frames of this address */
	mvneta_set_ucast_addr(pp, addr[5], queue);
}

1566 1567
/* Set the number of packets that will be received before RX interrupt
 * will be generated by HW.
1568 1569 1570 1571 1572 1573 1574 1575 1576
 */
static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
		    value | MVNETA_RXQ_NON_OCCUPIED(0));
	rxq->pkts_coal = value;
}

1577 1578
/* Set the time delay in usec before RX interrupt will be generated by
 * HW.
1579 1580 1581 1582
 */
static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
T
Thomas Petazzoni 已提交
1583 1584 1585 1586 1587
	u32 val;
	unsigned long clk_rate;

	clk_rate = clk_get_rate(pp->clk);
	val = (clk_rate / 1000000) * value;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
	rxq->time_coal = value;
}

/* Set threshold for TX_DONE pkts coalescing */
static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
					 struct mvneta_tx_queue *txq, u32 value)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));

	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);

	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);

	txq->done_pkts_coal = value;
}

/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1611 1612
				u32 phys_addr, void *virt_addr,
				struct mvneta_rx_queue *rxq)
1613
{
1614 1615
	int i;

1616
	rx_desc->buf_phys_addr = phys_addr;
1617 1618
	i = rx_desc - rxq->descs;
	rxq->buf_virt_addr[i] = virt_addr;
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
}

/* Decrement sent descriptors counter */
static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int sent_desc)
{
	u32 val;

	/* Only 255 TX descriptors can be updated at once */
	while (sent_desc > 0xff) {
		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
		sent_desc = sent_desc - 0xff;
	}

	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}

/* Get number of TX descriptors already sent by HW */
static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
					struct mvneta_tx_queue *txq)
{
	u32 val;
	int sent_desc;

	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
		MVNETA_TXQ_SENT_DESC_SHIFT;

	return sent_desc;
}

1653
/* Get number of sent descriptors and decrement counter.
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
 *  The number of sent descriptors is returned.
 */
static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq)
{
	int sent_desc;

	/* Get number of sent descriptors */
	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);

	/* Decrement sent descriptors counter */
	if (sent_desc)
		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);

	return sent_desc;
}

/* Set TXQ descriptors fields relevant for CSUM calculation */
static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
				int ip_hdr_len, int l4_proto)
{
	u32 command;

	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1678 1679 1680
	 * G_L4_chk, L4_type; required only for checksum
	 * calculation
	 */
1681 1682 1683
	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;

1684
	if (l3_proto == htons(ETH_P_IP))
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
		command |= MVNETA_TXD_IP_CSUM;
	else
		command |= MVNETA_TX_L3_IP6;

	if (l4_proto == IPPROTO_TCP)
		command |=  MVNETA_TX_L4_CSUM_FULL;
	else if (l4_proto == IPPROTO_UDP)
		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
	else
		command |= MVNETA_TX_L4_CSUM_NOT;

	return command;
}


/* Display more error info */
static void mvneta_rx_error(struct mvneta_port *pp,
			    struct mvneta_rx_desc *rx_desc)
{
	u32 status = rx_desc->status;

1706
	if (!mvneta_rxq_desc_is_first_last(status)) {
1707 1708
		netdev_err(pp->dev,
			   "bad rx status %08x (buffer oversize), size=%d\n",
1709
			   status, rx_desc->data_size);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		return;
	}

	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
	case MVNETA_RXD_ERR_CRC:
		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_OVERRUN:
		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_LEN:
		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_RESOURCE:
		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	}
}

1733 1734
/* Handle RX checksum offload based on the descriptor's status */
static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1735 1736
			   struct sk_buff *skb)
{
1737 1738
	if ((status & MVNETA_RXD_L3_IP4) &&
	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1739 1740 1741 1742 1743 1744 1745 1746
		skb->csum = 0;
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		return;
	}

	skb->ip_summed = CHECKSUM_NONE;
}

1747 1748 1749 1750
/* Return tx queue pointer (find last set bit) according to <cause> returned
 * form tx_done reg. <cause> must not be null. The return value is always a
 * valid queue for matching the first one found in <cause>.
 */
1751 1752 1753 1754 1755
static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
						     u32 cause)
{
	int queue = fls(cause) - 1;

1756
	return &pp->txqs[queue];
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
}

/* Free tx queue skbuffs */
static void mvneta_txq_bufs_free(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq, int num)
{
	int i;

	for (i = 0; i < num; i++) {
		struct mvneta_tx_desc *tx_desc = txq->descs +
			txq->txq_get_index;
		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];

		mvneta_txq_inc_get(txq);

1772 1773 1774 1775
		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size, DMA_TO_DEVICE);
1776 1777
		if (!skb)
			continue;
1778 1779 1780 1781 1782
		dev_kfree_skb_any(skb);
	}
}

/* Handle end of transmission */
1783
static void mvneta_txq_done(struct mvneta_port *pp,
1784 1785 1786 1787 1788 1789
			   struct mvneta_tx_queue *txq)
{
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
	int tx_done;

	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1790 1791 1792
	if (!tx_done)
		return;

1793 1794 1795 1796 1797
	mvneta_txq_bufs_free(pp, txq, tx_done);

	txq->count -= tx_done;

	if (netif_tx_queue_stopped(nq)) {
1798
		if (txq->count <= txq->tx_wake_threshold)
1799 1800 1801 1802
			netif_tx_wake_queue(nq);
	}
}

1803
void *mvneta_frag_alloc(unsigned int frag_size)
1804
{
1805 1806
	if (likely(frag_size <= PAGE_SIZE))
		return netdev_alloc_frag(frag_size);
1807
	else
1808
		return kmalloc(frag_size, GFP_ATOMIC);
1809
}
1810
EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1811

1812
void mvneta_frag_free(unsigned int frag_size, void *data)
1813
{
1814
	if (likely(frag_size <= PAGE_SIZE))
1815
		skb_free_frag(data);
1816 1817 1818
	else
		kfree(data);
}
1819
EXPORT_SYMBOL_GPL(mvneta_frag_free);
1820

1821
/* Refill processing for SW buffer management */
1822
static int mvneta_rx_refill(struct mvneta_port *pp,
1823 1824
			    struct mvneta_rx_desc *rx_desc,
			    struct mvneta_rx_queue *rxq)
1825 1826 1827

{
	dma_addr_t phys_addr;
1828
	void *data;
1829

1830
	data = mvneta_frag_alloc(pp->frag_size);
1831
	if (!data)
1832 1833
		return -ENOMEM;

1834
	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1835 1836 1837
				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
				   DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1838
		mvneta_frag_free(pp->frag_size, data);
1839 1840 1841
		return -ENOMEM;
	}

1842
	phys_addr += pp->rx_offset_correction;
1843
	mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1844 1845 1846 1847 1848 1849 1850 1851
	return 0;
}

/* Handle tx checksum */
static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		int ip_hdr_len = 0;
1852
		__be16 l3_proto = vlan_get_protocol(skb);
1853 1854
		u8 l4_proto;

1855
		if (l3_proto == htons(ETH_P_IP)) {
1856 1857 1858 1859 1860
			struct iphdr *ip4h = ip_hdr(skb);

			/* Calculate IPv4 checksum and L4 checksum */
			ip_hdr_len = ip4h->ihl;
			l4_proto = ip4h->protocol;
1861
		} else if (l3_proto == htons(ETH_P_IPV6)) {
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
			struct ipv6hdr *ip6h = ipv6_hdr(skb);

			/* Read l4_protocol from one of IPv6 extra headers */
			if (skb_network_header_len(skb) > 0)
				ip_hdr_len = (skb_network_header_len(skb) >> 2);
			l4_proto = ip6h->nexthdr;
		} else
			return MVNETA_TX_L4_CSUM_NOT;

		return mvneta_txq_desc_csum(skb_network_offset(skb),
1872
					    l3_proto, ip_hdr_len, l4_proto);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	}

	return MVNETA_TX_L4_CSUM_NOT;
}

/* Drop packets received by the RXQ and free buffers */
static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	int rx_done, i;

	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	if (rx_done)
		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);

	if (pp->bm_priv) {
		for (i = 0; i < rx_done; i++) {
			struct mvneta_rx_desc *rx_desc =
						  mvneta_rxq_next_desc_get(rxq);
			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
			struct mvneta_bm_pool *bm_pool;

			bm_pool = &pp->bm_priv->bm_pools[pool_id];
			/* Return dropped buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);
		}
		return;
	}

1903 1904
	for (i = 0; i < rxq->size; i++) {
		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1905
		void *data = rxq->buf_virt_addr[i];
1906 1907

		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1908
				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1909
		mvneta_frag_free(pp->frag_size, data);
1910
	}
1911
}
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
/* Main rx processing when using software buffer management */
static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
			  struct mvneta_rx_queue *rxq)
{
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
	struct net_device *dev = pp->dev;
	int rx_done;
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;

	/* Get number of received packets */
	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);

	if (rx_todo > rx_done)
		rx_todo = rx_done;

	rx_done = 0;

	/* Fairness NAPI loop */
	while (rx_done < rx_todo) {
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
		struct sk_buff *skb;
		unsigned char *data;
		dma_addr_t phys_addr;
		u32 rx_status, frag_size;
1938
		int rx_bytes, err, index;
1939 1940 1941 1942

		rx_done++;
		rx_status = rx_desc->status;
		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1943 1944
		index = rx_desc - rxq->descs;
		data = rxq->buf_virt_addr[index];
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		phys_addr = rx_desc->buf_phys_addr;

		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
err_drop_frame:
			dev->stats.rx_errors++;
			mvneta_rx_error(pp, rx_desc);
			/* leave the descriptor untouched */
			continue;
		}

		if (rx_bytes <= rx_copybreak) {
		/* better copy a small frame and not unmap the DMA region */
			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
			if (unlikely(!skb))
				goto err_drop_frame;

			dma_sync_single_range_for_cpu(dev->dev.parent,
1963
						      phys_addr,
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
						      MVNETA_MH_SIZE + NET_SKB_PAD,
						      rx_bytes,
						      DMA_FROM_DEVICE);
			memcpy(skb_put(skb, rx_bytes),
			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
			       rx_bytes);

			skb->protocol = eth_type_trans(skb, dev);
			mvneta_rx_csum(pp, rx_status, skb);
			napi_gro_receive(&port->napi, skb);

			rcvd_pkts++;
			rcvd_bytes += rx_bytes;

			/* leave the descriptor and buffer untouched */
			continue;
		}

		/* Refill processing */
1983
		err = mvneta_rx_refill(pp, rx_desc, rxq);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
		if (err) {
			netdev_err(dev, "Linux processing - Can't refill\n");
			rxq->missed++;
			goto err_drop_frame;
		}

		frag_size = pp->frag_size;

		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);

		/* After refill old buffer has to be unmapped regardless
		 * the skb is successfully built or not.
		 */
		dma_unmap_single(dev->dev.parent, phys_addr,
				 MVNETA_RX_BUF_SIZE(pp->pkt_size),
				 DMA_FROM_DEVICE);

		if (!skb)
			goto err_drop_frame;

		rcvd_pkts++;
		rcvd_bytes += rx_bytes;

		/* Linux processing */
		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
		skb_put(skb, rx_bytes);

		skb->protocol = eth_type_trans(skb, dev);

		mvneta_rx_csum(pp, rx_status, skb);

		napi_gro_receive(&port->napi, skb);
	}

	if (rcvd_pkts) {
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
	}

	/* Update rxq management counters */
	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);

	return rx_done;
2031 2032
}

2033 2034 2035
/* Main rx processing when using hardware buffer management */
static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
			  struct mvneta_rx_queue *rxq)
2036
{
2037
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2038
	struct net_device *dev = pp->dev;
2039
	int rx_done;
2040 2041
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	/* Get number of received packets */
	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);

	if (rx_todo > rx_done)
		rx_todo = rx_done;

	rx_done = 0;

	/* Fairness NAPI loop */
	while (rx_done < rx_todo) {
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2054
		struct mvneta_bm_pool *bm_pool = NULL;
2055
		struct sk_buff *skb;
2056
		unsigned char *data;
2057
		dma_addr_t phys_addr;
2058
		u32 rx_status, frag_size;
2059
		int rx_bytes, err;
2060
		u8 pool_id;
2061 2062 2063

		rx_done++;
		rx_status = rx_desc->status;
2064
		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2065
		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2066
		phys_addr = rx_desc->buf_phys_addr;
2067 2068
		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2069

2070
		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2071
		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2072 2073 2074 2075 2076
err_drop_frame_ret_pool:
			/* Return the buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);
err_drop_frame:
2077 2078
			dev->stats.rx_errors++;
			mvneta_rx_error(pp, rx_desc);
2079
			/* leave the descriptor untouched */
2080 2081 2082
			continue;
		}

2083 2084 2085 2086
		if (rx_bytes <= rx_copybreak) {
			/* better copy a small frame and not unmap the DMA region */
			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
			if (unlikely(!skb))
2087
				goto err_drop_frame_ret_pool;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

			dma_sync_single_range_for_cpu(dev->dev.parent,
			                              rx_desc->buf_phys_addr,
			                              MVNETA_MH_SIZE + NET_SKB_PAD,
			                              rx_bytes,
			                              DMA_FROM_DEVICE);
			memcpy(skb_put(skb, rx_bytes),
			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
			       rx_bytes);

			skb->protocol = eth_type_trans(skb, dev);
			mvneta_rx_csum(pp, rx_status, skb);
2100
			napi_gro_receive(&port->napi, skb);
2101 2102 2103 2104

			rcvd_pkts++;
			rcvd_bytes += rx_bytes;

2105 2106 2107 2108
			/* Return the buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);

2109 2110 2111 2112
			/* leave the descriptor and buffer untouched */
			continue;
		}

2113
		/* Refill processing */
2114
		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2115 2116 2117
		if (err) {
			netdev_err(dev, "Linux processing - Can't refill\n");
			rxq->missed++;
2118
			goto err_drop_frame_ret_pool;
2119 2120
		}

2121
		frag_size = bm_pool->hwbm_pool.frag_size;
2122 2123

		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2124

2125 2126 2127
		/* After refill old buffer has to be unmapped regardless
		 * the skb is successfully built or not.
		 */
2128 2129
		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
				 bm_pool->buf_size, DMA_FROM_DEVICE);
2130 2131 2132
		if (!skb)
			goto err_drop_frame;

2133 2134
		rcvd_pkts++;
		rcvd_bytes += rx_bytes;
2135 2136

		/* Linux processing */
2137
		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2138 2139 2140 2141
		skb_put(skb, rx_bytes);

		skb->protocol = eth_type_trans(skb, dev);

2142
		mvneta_rx_csum(pp, rx_status, skb);
2143

2144
		napi_gro_receive(&port->napi, skb);
2145 2146
	}

2147
	if (rcvd_pkts) {
2148 2149 2150 2151 2152 2153
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
2154 2155
	}

2156
	/* Update rxq management counters */
2157
	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2158 2159 2160 2161

	return rx_done;
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
static inline void
mvneta_tso_put_hdr(struct sk_buff *skb,
		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);

	txq->tx_skb[txq->txq_put_index] = NULL;
	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = hdr_len;
	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
	tx_desc->command |= MVNETA_TXD_F_DESC;
	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
				 txq->txq_put_index * TSO_HEADER_SIZE;
	mvneta_txq_inc_put(txq);
}

static inline int
mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
		    struct sk_buff *skb, char *data, int size,
		    bool last_tcp, bool is_last)
{
	struct mvneta_tx_desc *tx_desc;

	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = size;
	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
						size, DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
		     tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		return -ENOMEM;
	}

	tx_desc->command = 0;
	txq->tx_skb[txq->txq_put_index] = NULL;

	if (last_tcp) {
		/* last descriptor in the TCP packet */
		tx_desc->command = MVNETA_TXD_L_DESC;

		/* last descriptor in SKB */
		if (is_last)
			txq->tx_skb[txq->txq_put_index] = skb;
	}
	mvneta_txq_inc_put(txq);
	return 0;
}

static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
			 struct mvneta_tx_queue *txq)
{
	int total_len, data_left;
	int desc_count = 0;
	struct mvneta_port *pp = netdev_priv(dev);
	struct tso_t tso;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	int i;

	/* Count needed descriptors */
	if ((txq->count + tso_count_descs(skb)) >= txq->size)
		return 0;

	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
		pr_info("*** Is this even  possible???!?!?\n");
		return 0;
	}

	/* Initialize the TSO handler, and prepare the first payload */
	tso_start(skb, &tso);

	total_len = skb->len - hdr_len;
	while (total_len > 0) {
		char *hdr;

		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
		total_len -= data_left;
		desc_count++;

		/* prepare packet headers: MAC + IP + TCP */
		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);

		mvneta_tso_put_hdr(skb, pp, txq);

		while (data_left > 0) {
			int size;
			desc_count++;

			size = min_t(int, tso.size, data_left);

			if (mvneta_tso_put_data(dev, txq, skb,
						 tso.data, size,
						 size == data_left,
						 total_len == 0))
				goto err_release;
			data_left -= size;

			tso_build_data(skb, &tso, size);
		}
	}

	return desc_count;

err_release:
	/* Release all used data descriptors; header descriptors must not
	 * be DMA-unmapped.
	 */
	for (i = desc_count - 1; i >= 0; i--) {
		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2272
		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2273 2274 2275 2276 2277 2278 2279 2280 2281
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
		mvneta_txq_desc_put(txq);
	}
	return 0;
}

2282 2283 2284 2285 2286
/* Handle tx fragmentation processing */
static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
				  struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
2287
	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2288

2289
	for (i = 0; i < nr_frags; i++) {
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		void *addr = page_address(frag->page.p) + frag->page_offset;

		tx_desc = mvneta_txq_next_desc_get(txq);
		tx_desc->data_size = frag->size;

		tx_desc->buf_phys_addr =
			dma_map_single(pp->dev->dev.parent, addr,
				       tx_desc->data_size, DMA_TO_DEVICE);

		if (dma_mapping_error(pp->dev->dev.parent,
				      tx_desc->buf_phys_addr)) {
			mvneta_txq_desc_put(txq);
			goto error;
		}

2306
		if (i == nr_frags - 1) {
2307 2308 2309 2310 2311 2312 2313 2314
			/* Last descriptor */
			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
			txq->tx_skb[txq->txq_put_index] = skb;
		} else {
			/* Descriptor in the middle: Not First, Not Last */
			tx_desc->command = 0;
			txq->tx_skb[txq->txq_put_index] = NULL;
		}
2315
		mvneta_txq_inc_put(txq);
2316 2317 2318 2319 2320 2321
	}

	return 0;

error:
	/* Release all descriptors that were used to map fragments of
2322 2323
	 * this packet, as well as the corresponding DMA mappings
	 */
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	for (i = i - 1; i >= 0; i--) {
		tx_desc = txq->descs + i;
		dma_unmap_single(pp->dev->dev.parent,
				 tx_desc->buf_phys_addr,
				 tx_desc->data_size,
				 DMA_TO_DEVICE);
		mvneta_txq_desc_put(txq);
	}

	return -ENOMEM;
}

/* Main tx processing */
static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
2340 2341
	u16 txq_id = skb_get_queue_mapping(skb);
	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2342
	struct mvneta_tx_desc *tx_desc;
2343
	int len = skb->len;
2344 2345 2346 2347 2348 2349
	int frags = 0;
	u32 tx_cmd;

	if (!netif_running(dev))
		goto out;

2350 2351 2352 2353 2354
	if (skb_is_gso(skb)) {
		frags = mvneta_tx_tso(skb, dev, txq);
		goto out;
	}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	frags = skb_shinfo(skb)->nr_frags + 1;

	/* Get a descriptor for the first part of the packet */
	tx_desc = mvneta_txq_next_desc_get(txq);

	tx_cmd = mvneta_skb_tx_csum(pp, skb);

	tx_desc->data_size = skb_headlen(skb);

	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
						tx_desc->data_size,
						DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
				       tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		frags = 0;
		goto out;
	}

	if (frags == 1) {
		/* First and Last descriptor */
		tx_cmd |= MVNETA_TXD_FLZ_DESC;
		tx_desc->command = tx_cmd;
		txq->tx_skb[txq->txq_put_index] = skb;
		mvneta_txq_inc_put(txq);
	} else {
		/* First but not Last */
		tx_cmd |= MVNETA_TXD_F_DESC;
		txq->tx_skb[txq->txq_put_index] = NULL;
		mvneta_txq_inc_put(txq);
		tx_desc->command = tx_cmd;
		/* Continue with other skb fragments */
		if (mvneta_tx_frag_process(pp, skb, txq)) {
			dma_unmap_single(dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
			mvneta_txq_desc_put(txq);
			frags = 0;
			goto out;
		}
	}

out:
	if (frags > 0) {
2400
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2401 2402 2403 2404 2405
		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);

		txq->count += frags;
		mvneta_txq_pend_desc_add(pp, txq, frags);

2406
		if (txq->count >= txq->tx_stop_threshold)
2407
			netif_tx_stop_queue(nq);
2408

2409 2410
		u64_stats_update_begin(&stats->syncp);
		stats->tx_packets++;
2411
		stats->tx_bytes  += len;
2412
		u64_stats_update_end(&stats->syncp);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	} else {
		dev->stats.tx_dropped++;
		dev_kfree_skb_any(skb);
	}

	return NETDEV_TX_OK;
}


/* Free tx resources, when resetting a port */
static void mvneta_txq_done_force(struct mvneta_port *pp,
				  struct mvneta_tx_queue *txq)

{
	int tx_done = txq->count;

	mvneta_txq_bufs_free(pp, txq, tx_done);

	/* reset txq */
	txq->count = 0;
	txq->txq_put_index = 0;
	txq->txq_get_index = 0;
}

2437 2438 2439
/* Handle tx done - called in softirq context. The <cause_tx_done> argument
 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
 */
2440
static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2441 2442 2443 2444
{
	struct mvneta_tx_queue *txq;
	struct netdev_queue *nq;

2445
	while (cause_tx_done) {
2446 2447 2448 2449 2450
		txq = mvneta_tx_done_policy(pp, cause_tx_done);

		nq = netdev_get_tx_queue(pp->dev, txq->id);
		__netif_tx_lock(nq, smp_processor_id());

2451 2452
		if (txq->count)
			mvneta_txq_done(pp, txq);
2453 2454 2455 2456 2457 2458

		__netif_tx_unlock(nq);
		cause_tx_done &= ~((1 << txq->id));
	}
}

2459
/* Compute crc8 of the specified address, using a unique algorithm ,
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
 * according to hw spec, different than generic crc8 algorithm
 */
static int mvneta_addr_crc(unsigned char *addr)
{
	int crc = 0;
	int i;

	for (i = 0; i < ETH_ALEN; i++) {
		int j;

		crc = (crc ^ addr[i]) << 8;
		for (j = 7; j >= 0; j--) {
			if (crc & (0x100 << j))
				crc ^= 0x107 << j;
		}
	}

	return crc;
}

/* This method controls the net device special MAC multicast support.
 * The Special Multicast Table for MAC addresses supports MAC of the form
 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 * Table entries in the DA-Filter table. This method set the Special
 * Multicast Table appropriate entry.
 */
static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
					  unsigned char last_byte,
					  int queue)
{
	unsigned int smc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Register offset from SMC table base    */
	tbl_offset = (last_byte / 4);
	/* Entry offset within the above reg */
	reg_offset = last_byte % 4;

	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
					+ tbl_offset * 4));

	if (queue == -1)
		smc_table_reg &= ~(0xff << (8 * reg_offset));
	else {
		smc_table_reg &= ~(0xff << (8 * reg_offset));
		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
		    smc_table_reg);
}

/* This method controls the network device Other MAC multicast support.
 * The Other Multicast Table is used for multicast of another type.
 * A CRC-8 is used as an index to the Other Multicast Table entries
 * in the DA-Filter table.
 * The method gets the CRC-8 value from the calling routine and
 * sets the Other Multicast Table appropriate entry according to the
 * specified CRC-8 .
 */
static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
					unsigned char crc8,
					int queue)
{
	unsigned int omc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */

	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);

	if (queue == -1) {
		/* Clear accepts frame bit at specified Other DA table entry */
		omc_table_reg &= ~(0xff << (8 * reg_offset));
	} else {
		omc_table_reg &= ~(0xff << (8 * reg_offset));
		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
}

/* The network device supports multicast using two tables:
 *    1) Special Multicast Table for MAC addresses of the form
 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 *       Table entries in the DA-Filter table.
 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
 *       is used as an index to the Other Multicast Table entries in the
 *       DA-Filter table.
 */
static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
				 int queue)
{
	unsigned char crc_result = 0;

	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
		return 0;
	}

	crc_result = mvneta_addr_crc(p_addr);
	if (queue == -1) {
		if (pp->mcast_count[crc_result] == 0) {
			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
				    crc_result);
			return -EINVAL;
		}

		pp->mcast_count[crc_result]--;
		if (pp->mcast_count[crc_result] != 0) {
			netdev_info(pp->dev,
				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
				    pp->mcast_count[crc_result], crc_result);
			return -EINVAL;
		}
	} else
		pp->mcast_count[crc_result]++;

	mvneta_set_other_mcast_addr(pp, crc_result, queue);

	return 0;
}

/* Configure Fitering mode of Ethernet port */
static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
					  int is_promisc)
{
	u32 port_cfg_reg, val;

	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);

	val = mvreg_read(pp, MVNETA_TYPE_PRIO);

	/* Set / Clear UPM bit in port configuration register */
	if (is_promisc) {
		/* Accept all Unicast addresses */
		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
		val |= MVNETA_FORCE_UNI;
		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
	} else {
		/* Reject all Unicast addresses */
		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
		val &= ~MVNETA_FORCE_UNI;
	}

	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
}

/* register unicast and multicast addresses */
static void mvneta_set_rx_mode(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
	struct netdev_hw_addr *ha;

	if (dev->flags & IFF_PROMISC) {
		/* Accept all: Multicast + Unicast */
		mvneta_rx_unicast_promisc_set(pp, 1);
2624 2625 2626
		mvneta_set_ucast_table(pp, pp->rxq_def);
		mvneta_set_special_mcast_table(pp, pp->rxq_def);
		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2627 2628 2629 2630
	} else {
		/* Accept single Unicast */
		mvneta_rx_unicast_promisc_set(pp, 0);
		mvneta_set_ucast_table(pp, -1);
2631
		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2632 2633 2634

		if (dev->flags & IFF_ALLMULTI) {
			/* Accept all multicast */
2635 2636
			mvneta_set_special_mcast_table(pp, pp->rxq_def);
			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2637 2638 2639 2640 2641 2642 2643 2644
		} else {
			/* Accept only initialized multicast */
			mvneta_set_special_mcast_table(pp, -1);
			mvneta_set_other_mcast_table(pp, -1);

			if (!netdev_mc_empty(dev)) {
				netdev_for_each_mc_addr(ha, dev) {
					mvneta_mcast_addr_set(pp, ha->addr,
2645
							      pp->rxq_def);
2646 2647 2648 2649 2650 2651 2652 2653
				}
			}
		}
	}
}

/* Interrupt handling - the callback for request_irq() */
static irqreturn_t mvneta_isr(int irq, void *dev_id)
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
{
	struct mvneta_port *pp = (struct mvneta_port *)dev_id;

	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	napi_schedule(&pp->napi);

	return IRQ_HANDLED;
}

/* Interrupt handling - the callback for request_percpu_irq() */
static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2665
{
2666
	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2667

2668 2669
	disable_percpu_irq(port->pp->dev->irq);
	napi_schedule(&port->napi);
2670 2671 2672 2673

	return IRQ_HANDLED;
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
static int mvneta_fixed_link_update(struct mvneta_port *pp,
				    struct phy_device *phy)
{
	struct fixed_phy_status status;
	struct fixed_phy_status changed = {};
	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);

	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
		status.speed = SPEED_1000;
	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
		status.speed = SPEED_100;
	else
		status.speed = SPEED_10;
	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
	changed.link = 1;
	changed.speed = 1;
	changed.duplex = 1;
	fixed_phy_update_state(phy, &status, &changed);
	return 0;
}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
/* NAPI handler
 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
 * Bits 8 -15 of the cause Rx Tx register indicate that are received
 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
 * Each CPU has its own causeRxTx register
 */
static int mvneta_poll(struct napi_struct *napi, int budget)
{
	int rx_done = 0;
	u32 cause_rx_tx;
2707
	int rx_queue;
2708
	struct mvneta_port *pp = netdev_priv(napi->dev);
2709
	struct net_device *ndev = pp->dev;
2710
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2711 2712

	if (!netif_running(pp->dev)) {
2713
		napi_complete(napi);
2714 2715 2716 2717
		return rx_done;
	}

	/* Read cause register */
2718 2719 2720 2721 2722 2723 2724 2725 2726
	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);

		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
		if (pp->use_inband_status && (cause_misc &
				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
				 MVNETA_CAUSE_LINK_CHANGE |
				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2727
			mvneta_fixed_link_update(pp, ndev->phydev);
2728 2729
		}
	}
2730 2731 2732

	/* Release Tx descriptors */
	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2733
		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2734 2735
		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
	}
2736

2737
	/* For the case where the last mvneta_poll did not process all
2738 2739
	 * RX packets
	 */
2740 2741
	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));

2742 2743
	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
		port->cause_rx_tx;
2744 2745 2746

	if (rx_queue) {
		rx_queue = rx_queue - 1;
2747 2748 2749 2750
		if (pp->bm_priv)
			rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
		else
			rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2751 2752
	}

2753
	budget -= rx_done;
2754 2755 2756

	if (budget > 0) {
		cause_rx_tx = 0;
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
		napi_complete(napi);

		if (pp->neta_armada3700) {
			unsigned long flags;

			local_irq_save(flags);
			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
				    MVNETA_RX_INTR_MASK(rxq_number) |
				    MVNETA_TX_INTR_MASK(txq_number) |
				    MVNETA_MISCINTR_INTR_MASK);
			local_irq_restore(flags);
		} else {
			enable_percpu_irq(pp->dev->irq, 0);
		}
2771 2772
	}

2773 2774 2775 2776 2777
	if (pp->neta_armada3700)
		pp->cause_rx_tx = cause_rx_tx;
	else
		port->cause_rx_tx = cause_rx_tx;

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
	return rx_done;
}

/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
			   int num)
{
	int i;

	for (i = 0; i < num; i++) {
2788
		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2789
		if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2790
			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2791 2792 2793 2794 2795 2796
				__func__, rxq->id, i, num);
			break;
		}
	}

	/* Add this number of RX descriptors as non occupied (ready to
2797 2798
	 * get packets)
	 */
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	mvneta_rxq_non_occup_desc_add(pp, rxq, i);

	return i;
}

/* Free all packets pending transmit from all TXQs and reset TX port */
static void mvneta_tx_reset(struct mvneta_port *pp)
{
	int queue;

2809
	/* free the skb's in the tx ring */
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_done_force(pp, &pp->txqs[queue]);

	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
}

static void mvneta_rx_reset(struct mvneta_port *pp)
{
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
}

/* Rx/Tx queue initialization/cleanup methods */

/* Create a specified RX queue */
static int mvneta_rxq_init(struct mvneta_port *pp,
			   struct mvneta_rx_queue *rxq)

{
	rxq->size = pp->rx_ring_size;

	/* Allocate memory for RX descriptors */
	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
					&rxq->descs_phys, GFP_KERNEL);
2836
	if (rxq->descs == NULL)
2837 2838 2839 2840 2841 2842 2843 2844 2845
		return -ENOMEM;

	rxq->last_desc = rxq->size - 1;

	/* Set Rx descriptors queue starting address */
	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);

	/* Set Offset */
2846
	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2847 2848 2849 2850 2851

	/* Set coalescing pkts and time */
	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);

2852 2853 2854 2855 2856
	if (!pp->bm_priv) {
		/* Fill RXQ with buffers from RX pool */
		mvneta_rxq_buf_size_set(pp, rxq,
					MVNETA_RX_BUF_SIZE(pp->pkt_size));
		mvneta_rxq_bm_disable(pp, rxq);
2857
		mvneta_rxq_fill(pp, rxq, rxq->size);
2858 2859 2860 2861
	} else {
		mvneta_rxq_bm_enable(pp, rxq);
		mvneta_rxq_long_pool_set(pp, rxq);
		mvneta_rxq_short_pool_set(pp, rxq);
2862
		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2863 2864
	}

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	return 0;
}

/* Cleanup Rx queue */
static void mvneta_rxq_deinit(struct mvneta_port *pp,
			      struct mvneta_rx_queue *rxq)
{
	mvneta_rxq_drop_pkts(pp, rxq);

	if (rxq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
				  rxq->descs,
				  rxq->descs_phys);

	rxq->descs             = NULL;
	rxq->last_desc         = 0;
	rxq->next_desc_to_proc = 0;
	rxq->descs_phys        = 0;
}

/* Create and initialize a tx queue */
static int mvneta_txq_init(struct mvneta_port *pp,
			   struct mvneta_tx_queue *txq)
{
2890 2891
	int cpu;

2892 2893
	txq->size = pp->tx_ring_size;

2894 2895 2896 2897 2898 2899 2900 2901
	/* A queue must always have room for at least one skb.
	 * Therefore, stop the queue when the free entries reaches
	 * the maximum number of descriptors per skb.
	 */
	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;


2902 2903 2904 2905
	/* Allocate memory for TX descriptors */
	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					txq->size * MVNETA_DESC_ALIGNED_SIZE,
					&txq->descs_phys, GFP_KERNEL);
2906
	if (txq->descs == NULL)
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		return -ENOMEM;

	txq->last_desc = txq->size - 1;

	/* Set maximum bandwidth for enabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);

	/* Set Tx descriptors queue starting address */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);

	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
	if (txq->tx_skb == NULL) {
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);
		return -ENOMEM;
	}
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
					   txq->size * TSO_HEADER_SIZE,
					   &txq->tso_hdrs_phys, GFP_KERNEL);
	if (txq->tso_hdrs == NULL) {
		kfree(txq->tx_skb);
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);
		return -ENOMEM;
	}
2938 2939
	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);

2940 2941 2942 2943 2944 2945 2946 2947
	/* Setup XPS mapping */
	if (txq_number > 1)
		cpu = txq->id % num_present_cpus();
	else
		cpu = pp->rxq_def % num_present_cpus();
	cpumask_set_cpu(cpu, &txq->affinity_mask);
	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);

2948 2949 2950 2951 2952 2953 2954 2955 2956
	return 0;
}

/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
static void mvneta_txq_deinit(struct mvneta_port *pp,
			      struct mvneta_tx_queue *txq)
{
	kfree(txq->tx_skb);

2957 2958 2959 2960
	if (txq->tso_hdrs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * TSO_HEADER_SIZE,
				  txq->tso_hdrs, txq->tso_hdrs_phys);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
	if (txq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);

	txq->descs             = NULL;
	txq->last_desc         = 0;
	txq->next_desc_to_proc = 0;
	txq->descs_phys        = 0;

	/* Set minimum bandwidth for disabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);

	/* Set Tx descriptors queue starting address and size */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
}

/* Cleanup all Tx queues */
static void mvneta_cleanup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_deinit(pp, &pp->txqs[queue]);
}

/* Cleanup all Rx queues */
static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
{
2992 2993 2994 2995
	int queue;

	for (queue = 0; queue < txq_number; queue++)
		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2996 2997 2998 2999 3000 3001
}


/* Init all Rx queues */
static int mvneta_setup_rxqs(struct mvneta_port *pp)
{
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);

		if (err) {
			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
				   __func__, queue);
			mvneta_cleanup_rxqs(pp);
			return err;
		}
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	}

	return 0;
}

/* Init all tx queues */
static int mvneta_setup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++) {
		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
		if (err) {
			netdev_err(pp->dev, "%s: can't create txq=%d\n",
				   __func__, queue);
			mvneta_cleanup_txqs(pp);
			return err;
		}
	}

	return 0;
}

static void mvneta_start_dev(struct mvneta_port *pp)
{
3038
	int cpu;
3039
	struct net_device *ndev = pp->dev;
3040

3041 3042 3043 3044 3045 3046
	mvneta_max_rx_size_set(pp, pp->pkt_size);
	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);

	/* start the Rx/Tx activity */
	mvneta_port_enable(pp);

3047 3048 3049 3050 3051
	if (!pp->neta_armada3700) {
		/* Enable polling on the port */
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);
3052

3053 3054 3055 3056
			napi_enable(&port->napi);
		}
	} else {
		napi_enable(&pp->napi);
3057
	}
3058

3059
	/* Unmask interrupts. It has to be done from each CPU */
3060 3061
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);

3062 3063 3064 3065
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
		    MVNETA_CAUSE_LINK_CHANGE |
		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3066

3067
	phy_start(ndev->phydev);
3068 3069 3070 3071 3072
	netif_tx_start_all_queues(pp->dev);
}

static void mvneta_stop_dev(struct mvneta_port *pp)
{
3073
	unsigned int cpu;
3074
	struct net_device *ndev = pp->dev;
3075

3076
	phy_stop(ndev->phydev);
3077

3078 3079 3080 3081
	if (!pp->neta_armada3700) {
		for_each_online_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);
3082

3083 3084 3085 3086
			napi_disable(&port->napi);
		}
	} else {
		napi_disable(&pp->napi);
3087
	}
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

	netif_carrier_off(pp->dev);

	mvneta_port_down(pp);
	netif_tx_stop_all_queues(pp->dev);

	/* Stop the port activity */
	mvneta_port_disable(pp);

	/* Clear all ethernet port interrupts */
3098
	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3099 3100

	/* Mask all ethernet port interrupts */
3101
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3102 3103 3104 3105 3106

	mvneta_tx_reset(pp);
	mvneta_rx_reset(pp);
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
static void mvneta_percpu_enable(void *arg)
{
	struct mvneta_port *pp = arg;

	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
}

static void mvneta_percpu_disable(void *arg)
{
	struct mvneta_port *pp = arg;

	disable_percpu_irq(pp->dev->irq);
}

3121 3122 3123 3124 3125 3126
/* Change the device mtu */
static int mvneta_change_mtu(struct net_device *dev, int mtu)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int ret;

3127 3128 3129 3130 3131
	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
	}
3132 3133 3134

	dev->mtu = mtu;

3135
	if (!netif_running(dev)) {
3136 3137 3138
		if (pp->bm_priv)
			mvneta_bm_update_mtu(pp, mtu);

3139
		netdev_update_features(dev);
3140
		return 0;
3141
	}
3142

3143
	/* The interface is running, so we have to force a
3144
	 * reallocation of the queues
3145 3146
	 */
	mvneta_stop_dev(pp);
3147
	on_each_cpu(mvneta_percpu_disable, pp, true);
3148 3149 3150 3151

	mvneta_cleanup_txqs(pp);
	mvneta_cleanup_rxqs(pp);

3152 3153 3154
	if (pp->bm_priv)
		mvneta_bm_update_mtu(pp, mtu);

3155
	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3156 3157
	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3158 3159 3160

	ret = mvneta_setup_rxqs(pp);
	if (ret) {
3161
		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3162 3163 3164
		return ret;
	}

3165 3166 3167 3168 3169
	ret = mvneta_setup_txqs(pp);
	if (ret) {
		netdev_err(dev, "unable to setup txqs after MTU change\n");
		return ret;
	}
3170

3171
	on_each_cpu(mvneta_percpu_enable, pp, true);
3172 3173 3174
	mvneta_start_dev(pp);
	mvneta_port_up(pp);

3175 3176
	netdev_update_features(dev);

3177 3178 3179
	return 0;
}

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
static netdev_features_t mvneta_fix_features(struct net_device *dev,
					     netdev_features_t features)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
		netdev_info(dev,
			    "Disable IP checksum for MTU greater than %dB\n",
			    pp->tx_csum_limit);
	}

	return features;
}

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/* Get mac address */
static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
{
	u32 mac_addr_l, mac_addr_h;

	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
	addr[0] = (mac_addr_h >> 24) & 0xFF;
	addr[1] = (mac_addr_h >> 16) & 0xFF;
	addr[2] = (mac_addr_h >> 8) & 0xFF;
	addr[3] = mac_addr_h & 0xFF;
	addr[4] = (mac_addr_l >> 8) & 0xFF;
	addr[5] = mac_addr_l & 0xFF;
}

3210 3211 3212 3213
/* Handle setting mac address */
static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
{
	struct mvneta_port *pp = netdev_priv(dev);
3214 3215
	struct sockaddr *sockaddr = addr;
	int ret;
3216

3217 3218 3219
	ret = eth_prepare_mac_addr_change(dev, addr);
	if (ret < 0)
		return ret;
3220 3221 3222 3223
	/* Remove previous address table entry */
	mvneta_mac_addr_set(pp, dev->dev_addr, -1);

	/* Set new addr in hw */
3224
	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3225

3226
	eth_commit_mac_addr_change(dev, addr);
3227 3228 3229 3230 3231 3232
	return 0;
}

static void mvneta_adjust_link(struct net_device *ndev)
{
	struct mvneta_port *pp = netdev_priv(ndev);
3233
	struct phy_device *phydev = ndev->phydev;
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	int status_change = 0;

	if (phydev->link) {
		if ((pp->speed != phydev->speed) ||
		    (pp->duplex != phydev->duplex)) {
			u32 val;

			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3244
				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3245 3246 3247 3248 3249 3250

			if (phydev->duplex)
				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;

			if (phydev->speed == SPEED_1000)
				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3251
			else if (phydev->speed == SPEED_100)
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
				val |= MVNETA_GMAC_CONFIG_MII_SPEED;

			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);

			pp->duplex = phydev->duplex;
			pp->speed  = phydev->speed;
		}
	}

	if (phydev->link != pp->link) {
		if (!phydev->link) {
			pp->duplex = -1;
			pp->speed = 0;
		}

		pp->link = phydev->link;
		status_change = 1;
	}

	if (status_change) {
		if (phydev->link) {
3273 3274 3275 3276 3277 3278 3279 3280
			if (!pp->use_inband_status) {
				u32 val = mvreg_read(pp,
						  MVNETA_GMAC_AUTONEG_CONFIG);
				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
				val |= MVNETA_GMAC_FORCE_LINK_PASS;
				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
					    val);
			}
3281 3282
			mvneta_port_up(pp);
		} else {
3283 3284 3285 3286 3287 3288 3289 3290
			if (!pp->use_inband_status) {
				u32 val = mvreg_read(pp,
						  MVNETA_GMAC_AUTONEG_CONFIG);
				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
					    val);
			}
3291 3292
			mvneta_port_down(pp);
		}
3293
		phy_print_status(phydev);
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	}
}

static int mvneta_mdio_probe(struct mvneta_port *pp)
{
	struct phy_device *phy_dev;

	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
				 pp->phy_interface);
	if (!phy_dev) {
		netdev_err(pp->dev, "could not find the PHY\n");
		return -ENODEV;
	}

	phy_dev->supported &= PHY_GBIT_FEATURES;
	phy_dev->advertising = phy_dev->supported;

	pp->link    = 0;
	pp->duplex  = 0;
	pp->speed   = 0;

	return 0;
}

static void mvneta_mdio_remove(struct mvneta_port *pp)
{
3320 3321 3322
	struct net_device *ndev = pp->dev;

	phy_disconnect(ndev->phydev);
3323 3324
}

3325 3326 3327 3328
/* Electing a CPU must be done in an atomic way: it should be done
 * after or before the removal/insertion of a CPU and this function is
 * not reentrant.
 */
3329 3330
static void mvneta_percpu_elect(struct mvneta_port *pp)
{
3331 3332 3333 3334 3335 3336 3337
	int elected_cpu = 0, max_cpu, cpu, i = 0;

	/* Use the cpu associated to the rxq when it is online, in all
	 * the other cases, use the cpu 0 which can't be offline.
	 */
	if (cpu_online(pp->rxq_def))
		elected_cpu = pp->rxq_def;
3338

3339
	max_cpu = num_present_cpus();
3340 3341

	for_each_online_cpu(cpu) {
3342 3343 3344 3345 3346 3347 3348
		int rxq_map = 0, txq_map = 0;
		int rxq;

		for (rxq = 0; rxq < rxq_number; rxq++)
			if ((rxq % max_cpu) == cpu)
				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);

3349
		if (cpu == elected_cpu)
3350 3351
			/* Map the default receive queue queue to the
			 * elected CPU
3352
			 */
3353
			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3354 3355 3356 3357 3358 3359

		/* We update the TX queue map only if we have one
		 * queue. In this case we associate the TX queue to
		 * the CPU bound to the default RX queue
		 */
		if (txq_number == 1)
3360
			txq_map = (cpu == elected_cpu) ?
3361 3362 3363 3364 3365
				MVNETA_CPU_TXQ_ACCESS(1) : 0;
		else
			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;

3366 3367 3368 3369 3370 3371 3372
		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);

		/* Update the interrupt mask on each CPU according the
		 * new mapping
		 */
		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
					 pp, true);
3373
		i++;
3374

3375 3376 3377
	}
};

3378
static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3379
{
3380 3381 3382
	int other_cpu;
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_online);
3383 3384 3385
	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);


3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	spin_lock(&pp->lock);
	/*
	 * Configuring the driver for a new CPU while the driver is
	 * stopping is racy, so just avoid it.
	 */
	if (pp->is_stopped) {
		spin_unlock(&pp->lock);
		return 0;
	}
	netif_tx_stop_all_queues(pp->dev);
3396

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	/*
	 * We have to synchronise on tha napi of each CPU except the one
	 * just being woken up
	 */
	for_each_online_cpu(other_cpu) {
		if (other_cpu != cpu) {
			struct mvneta_pcpu_port *other_port =
				per_cpu_ptr(pp->ports, other_cpu);

			napi_synchronize(&other_port->napi);
3407
		}
3408
	}
3409

3410 3411 3412
	/* Mask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
	napi_enable(&port->napi);
3413

3414 3415 3416 3417 3418
	/*
	 * Enable per-CPU interrupts on the CPU that is
	 * brought up.
	 */
	mvneta_percpu_enable(pp);
3419

3420 3421 3422 3423 3424
	/*
	 * Enable per-CPU interrupt on the one CPU we care
	 * about.
	 */
	mvneta_percpu_elect(pp);
3425

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	/* Unmask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
		    MVNETA_CAUSE_LINK_CHANGE |
		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
	netif_tx_start_all_queues(pp->dev);
	spin_unlock(&pp->lock);
	return 0;
}
3436

3437 3438 3439 3440 3441
static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
{
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_online);
	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3442

3443 3444 3445 3446 3447 3448 3449 3450
	/*
	 * Thanks to this lock we are sure that any pending cpu election is
	 * done.
	 */
	spin_lock(&pp->lock);
	/* Mask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
	spin_unlock(&pp->lock);
3451

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	napi_synchronize(&port->napi);
	napi_disable(&port->napi);
	/* Disable per-CPU interrupts on the CPU that is brought down. */
	mvneta_percpu_disable(pp);
	return 0;
}

static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
{
	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
						  node_dead);

	/* Check if a new CPU must be elected now this on is down */
	spin_lock(&pp->lock);
	mvneta_percpu_elect(pp);
	spin_unlock(&pp->lock);
	/* Unmask all ethernet port interrupts */
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
		    MVNETA_CAUSE_LINK_CHANGE |
		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
	netif_tx_start_all_queues(pp->dev);
	return 0;
3476 3477
}

3478 3479 3480
static int mvneta_open(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
3481
	int ret;
3482 3483

	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3484 3485
	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495

	ret = mvneta_setup_rxqs(pp);
	if (ret)
		return ret;

	ret = mvneta_setup_txqs(pp);
	if (ret)
		goto err_cleanup_rxqs;

	/* Connect to port interrupt line */
3496 3497 3498 3499 3500 3501
	if (pp->neta_armada3700)
		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
				  dev->name, pp);
	else
		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
					 dev->name, pp->ports);
3502 3503 3504 3505 3506
	if (ret) {
		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
		goto err_cleanup_txqs;
	}

3507 3508 3509 3510 3511
	if (!pp->neta_armada3700) {
		/* Enable per-CPU interrupt on all the CPU to handle our RX
		 * queue interrupts
		 */
		on_each_cpu(mvneta_percpu_enable, pp, true);
3512

3513 3514 3515 3516 3517 3518 3519 3520
		pp->is_stopped = false;
		/* Register a CPU notifier to handle the case where our CPU
		 * might be taken offline.
		 */
		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
						       &pp->node_online);
		if (ret)
			goto err_free_irq;
3521

3522 3523 3524 3525 3526
		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						       &pp->node_dead);
		if (ret)
			goto err_free_online_hp;
	}
3527

3528 3529 3530 3531 3532 3533
	/* In default link is down */
	netif_carrier_off(pp->dev);

	ret = mvneta_mdio_probe(pp);
	if (ret < 0) {
		netdev_err(dev, "cannot probe MDIO bus\n");
3534
		goto err_free_dead_hp;
3535 3536 3537 3538 3539 3540
	}

	mvneta_start_dev(pp);

	return 0;

3541
err_free_dead_hp:
3542 3543 3544
	if (!pp->neta_armada3700)
		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
						    &pp->node_dead);
3545
err_free_online_hp:
3546 3547 3548
	if (!pp->neta_armada3700)
		cpuhp_state_remove_instance_nocalls(online_hpstate,
						    &pp->node_online);
3549
err_free_irq:
3550 3551 3552 3553 3554 3555
	if (pp->neta_armada3700) {
		free_irq(pp->dev->irq, pp);
	} else {
		on_each_cpu(mvneta_percpu_disable, pp, true);
		free_percpu_irq(pp->dev->irq, pp->ports);
	}
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
err_cleanup_txqs:
	mvneta_cleanup_txqs(pp);
err_cleanup_rxqs:
	mvneta_cleanup_rxqs(pp);
	return ret;
}

/* Stop the port, free port interrupt line */
static int mvneta_stop(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);

3568 3569 3570 3571 3572 3573 3574 3575 3576
	if (!pp->neta_armada3700) {
		/* Inform that we are stopping so we don't want to setup the
		 * driver for new CPUs in the notifiers. The code of the
		 * notifier for CPU online is protected by the same spinlock,
		 * so when we get the lock, the notifer work is done.
		 */
		spin_lock(&pp->lock);
		pp->is_stopped = true;
		spin_unlock(&pp->lock);
3577

3578 3579
		mvneta_stop_dev(pp);
		mvneta_mdio_remove(pp);
3580 3581 3582 3583

	cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online);
	cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
					    &pp->node_dead);
3584 3585 3586 3587 3588 3589 3590 3591
		on_each_cpu(mvneta_percpu_disable, pp, true);
		free_percpu_irq(dev->irq, pp->ports);
	} else {
		mvneta_stop_dev(pp);
		mvneta_mdio_remove(pp);
		free_irq(dev->irq, pp);
	}

3592 3593 3594 3595 3596 3597
	mvneta_cleanup_rxqs(pp);
	mvneta_cleanup_txqs(pp);

	return 0;
}

3598 3599
static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
3600
	if (!dev->phydev)
3601 3602
		return -ENOTSUPP;

3603
	return phy_mii_ioctl(dev->phydev, ifr, cmd);
3604 3605
}

3606 3607
/* Ethtool methods */

3608
/* Set link ksettings (phy address, speed) for ethtools */
3609 3610 3611
static int
mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
				  const struct ethtool_link_ksettings *cmd)
3612
{
3613 3614
	struct mvneta_port *pp = netdev_priv(ndev);
	struct phy_device *phydev = ndev->phydev;
3615

3616
	if (!phydev)
3617 3618
		return -ENODEV;

3619
	if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3620 3621
		u32 val;

3622
		mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3623

3624
		if (cmd->base.autoneg == AUTONEG_DISABLE) {
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
				 MVNETA_GMAC_CONFIG_GMII_SPEED |
				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);

			if (phydev->duplex)
				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;

			if (phydev->speed == SPEED_1000)
				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
			else if (phydev->speed == SPEED_100)
				val |= MVNETA_GMAC_CONFIG_MII_SPEED;

			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
		}

3641
		pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3642 3643 3644
		netdev_info(pp->dev, "autoneg status set to %i\n",
			    pp->use_inband_status);

3645
		if (netif_running(ndev)) {
3646 3647 3648 3649 3650
			mvneta_port_down(pp);
			mvneta_port_up(pp);
		}
	}

3651
	return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
}

/* Set interrupt coalescing for ethtools */
static int mvneta_ethtool_set_coalesce(struct net_device *dev,
				       struct ethtool_coalesce *c)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->time_coal = c->rx_coalesce_usecs;
		rxq->pkts_coal = c->rx_max_coalesced_frames;
		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->done_pkts_coal = c->tx_max_coalesced_frames;
		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
	}

	return 0;
}

/* get coalescing for ethtools */
static int mvneta_ethtool_get_coalesce(struct net_device *dev,
				       struct ethtool_coalesce *c)
{
	struct mvneta_port *pp = netdev_priv(dev);

	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;

	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
	return 0;
}


static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
				    struct ethtool_drvinfo *drvinfo)
{
	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
		sizeof(drvinfo->driver));
	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
		sizeof(drvinfo->version));
	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
		sizeof(drvinfo->bus_info));
}


static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
					 struct ethtool_ringparam *ring)
{
	struct mvneta_port *pp = netdev_priv(netdev);

	ring->rx_max_pending = MVNETA_MAX_RXD;
	ring->tx_max_pending = MVNETA_MAX_TXD;
	ring->rx_pending = pp->rx_ring_size;
	ring->tx_pending = pp->tx_ring_size;
}

static int mvneta_ethtool_set_ringparam(struct net_device *dev,
					struct ethtool_ringparam *ring)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
		return -EINVAL;
	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
		ring->rx_pending : MVNETA_MAX_RXD;
3724 3725 3726 3727 3728 3729

	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
	if (pp->tx_ring_size != ring->tx_pending)
		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
			    pp->tx_ring_size, ring->tx_pending);
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742

	if (netif_running(dev)) {
		mvneta_stop(dev);
		if (mvneta_open(dev)) {
			netdev_err(dev,
				   "error on opening device after ring param change\n");
			return -ENOMEM;
		}
	}

	return 0;
}

R
Russell King 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
				       u8 *data)
{
	if (sset == ETH_SS_STATS) {
		int i;

		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
			memcpy(data + i * ETH_GSTRING_LEN,
			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
	}
}

static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
{
	const struct mvneta_statistic *s;
	void __iomem *base = pp->base;
	u32 high, low, val;
3760
	u64 val64;
R
Russell King 已提交
3761 3762 3763 3764 3765 3766 3767 3768
	int i;

	for (i = 0, s = mvneta_statistics;
	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
	     s++, i++) {
		switch (s->type) {
		case T_REG_32:
			val = readl_relaxed(base + s->offset);
3769
			pp->ethtool_stats[i] += val;
R
Russell King 已提交
3770 3771 3772 3773 3774
			break;
		case T_REG_64:
			/* Docs say to read low 32-bit then high */
			low = readl_relaxed(base + s->offset);
			high = readl_relaxed(base + s->offset + 4);
3775 3776
			val64 = (u64)high << 32 | low;
			pp->ethtool_stats[i] += val64;
R
Russell King 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
			break;
		}
	}
}

static void mvneta_ethtool_get_stats(struct net_device *dev,
				     struct ethtool_stats *stats, u64 *data)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int i;

	mvneta_ethtool_update_stats(pp);

	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
		*data++ = pp->ethtool_stats[i];
}

static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
{
	if (sset == ETH_SS_STATS)
		return ARRAY_SIZE(mvneta_statistics);
	return -EOPNOTSUPP;
}

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
{
	return MVNETA_RSS_LU_TABLE_SIZE;
}

static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
				    struct ethtool_rxnfc *info,
				    u32 *rules __always_unused)
{
	switch (info->cmd) {
	case ETHTOOL_GRXRINGS:
		info->data =  rxq_number;
		return 0;
	case ETHTOOL_GRXFH:
		return -EOPNOTSUPP;
	default:
		return -EOPNOTSUPP;
	}
}

static int  mvneta_config_rss(struct mvneta_port *pp)
{
	int cpu;
	u32 val;

	netif_tx_stop_all_queues(pp->dev);

3828
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848

	/* We have to synchronise on the napi of each CPU */
	for_each_online_cpu(cpu) {
		struct mvneta_pcpu_port *pcpu_port =
			per_cpu_ptr(pp->ports, cpu);

		napi_synchronize(&pcpu_port->napi);
		napi_disable(&pcpu_port->napi);
	}

	pp->rxq_def = pp->indir[0];

	/* Update unicast mapping */
	mvneta_set_rx_mode(pp->dev);

	/* Update val of portCfg register accordingly with all RxQueue types */
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	/* Update the elected CPU matching the new rxq_def */
3849
	spin_lock(&pp->lock);
3850
	mvneta_percpu_elect(pp);
3851
	spin_unlock(&pp->lock);
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

	/* We have to synchronise on the napi of each CPU */
	for_each_online_cpu(cpu) {
		struct mvneta_pcpu_port *pcpu_port =
			per_cpu_ptr(pp->ports, cpu);

		napi_enable(&pcpu_port->napi);
	}

	netif_tx_start_all_queues(pp->dev);

	return 0;
}

static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
				   const u8 *key, const u8 hfunc)
{
	struct mvneta_port *pp = netdev_priv(dev);
3870 3871 3872 3873 3874

	/* Current code for Armada 3700 doesn't support RSS features yet */
	if (pp->neta_armada3700)
		return -EOPNOTSUPP;

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	/* We require at least one supported parameter to be changed
	 * and no change in any of the unsupported parameters
	 */
	if (key ||
	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
		return -EOPNOTSUPP;

	if (!indir)
		return 0;

	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);

	return mvneta_config_rss(pp);
}

static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
				   u8 *hfunc)
{
	struct mvneta_port *pp = netdev_priv(dev);

3895 3896 3897 3898
	/* Current code for Armada 3700 doesn't support RSS features yet */
	if (pp->neta_armada3700)
		return -EOPNOTSUPP;

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
	if (hfunc)
		*hfunc = ETH_RSS_HASH_TOP;

	if (!indir)
		return 0;

	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);

	return 0;
}

3910 3911 3912 3913 3914 3915 3916
static const struct net_device_ops mvneta_netdev_ops = {
	.ndo_open            = mvneta_open,
	.ndo_stop            = mvneta_stop,
	.ndo_start_xmit      = mvneta_tx,
	.ndo_set_rx_mode     = mvneta_set_rx_mode,
	.ndo_set_mac_address = mvneta_set_mac_addr,
	.ndo_change_mtu      = mvneta_change_mtu,
3917
	.ndo_fix_features    = mvneta_fix_features,
3918
	.ndo_get_stats64     = mvneta_get_stats64,
3919
	.ndo_do_ioctl        = mvneta_ioctl,
3920 3921 3922
};

const struct ethtool_ops mvneta_eth_tool_ops = {
3923
	.nway_reset	= phy_ethtool_nway_reset,
3924 3925 3926 3927 3928 3929
	.get_link       = ethtool_op_get_link,
	.set_coalesce   = mvneta_ethtool_set_coalesce,
	.get_coalesce   = mvneta_ethtool_get_coalesce,
	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
	.get_ringparam  = mvneta_ethtool_get_ringparam,
	.set_ringparam	= mvneta_ethtool_set_ringparam,
R
Russell King 已提交
3930 3931 3932
	.get_strings	= mvneta_ethtool_get_strings,
	.get_ethtool_stats = mvneta_ethtool_get_stats,
	.get_sset_count	= mvneta_ethtool_get_sset_count,
3933 3934 3935 3936
	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
	.get_rxfh	= mvneta_ethtool_get_rxfh,
	.set_rxfh	= mvneta_ethtool_set_rxfh,
3937 3938
	.get_link_ksettings = phy_ethtool_get_link_ksettings,
	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3939 3940 3941
};

/* Initialize hw */
3942
static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3943 3944 3945 3946 3947 3948 3949 3950 3951
{
	int queue;

	/* Disable port */
	mvneta_port_disable(pp);

	/* Set port default values */
	mvneta_defaults_set(pp);

3952 3953
	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
				GFP_KERNEL);
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
	if (!pp->txqs)
		return -ENOMEM;

	/* Initialize TX descriptor rings */
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->id = queue;
		txq->size = pp->tx_ring_size;
		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
	}

3965 3966 3967
	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
				GFP_KERNEL);
	if (!pp->rxqs)
3968 3969 3970 3971 3972 3973 3974 3975 3976
		return -ENOMEM;

	/* Create Rx descriptor rings */
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->id = queue;
		rxq->size = pp->rx_ring_size;
		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
		rxq->time_coal = MVNETA_RX_COAL_USEC;
3977 3978 3979 3980 3981
		rxq->buf_virt_addr = devm_kmalloc(pp->dev->dev.parent,
						  rxq->size * sizeof(void *),
						  GFP_KERNEL);
		if (!rxq->buf_virt_addr)
			return -ENOMEM;
3982 3983 3984 3985 3986 3987
	}

	return 0;
}

/* platform glue : initialize decoding windows */
G
Greg KH 已提交
3988 3989
static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
				     const struct mbus_dram_target_info *dram)
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
{
	u32 win_enable;
	u32 win_protect;
	int i;

	for (i = 0; i < 6; i++) {
		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

		if (i < 4)
			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
	}

	win_enable = 0x3f;
	win_protect = 0;

4006 4007 4008 4009 4010 4011 4012 4013
	if (dram) {
		for (i = 0; i < dram->num_cs; i++) {
			const struct mbus_dram_window *cs = dram->cs + i;

			mvreg_write(pp, MVNETA_WIN_BASE(i),
				    (cs->base & 0xffff0000) |
				    (cs->mbus_attr << 8) |
				    dram->mbus_dram_target_id);
4014

4015 4016
			mvreg_write(pp, MVNETA_WIN_SIZE(i),
				    (cs->size - 1) & 0xffff0000);
4017

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
			win_enable &= ~(1 << i);
			win_protect |= 3 << (2 * i);
		}
	} else {
		/* For Armada3700 open default 4GB Mbus window, leaving
		 * arbitration of target/attribute to a different layer
		 * of configuration.
		 */
		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
		win_enable &= ~BIT(0);
		win_protect = 3;
4029 4030 4031
	}

	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4032
	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4033 4034 4035
}

/* Power up the port */
4036
static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4037
{
4038
	u32 ctrl;
4039 4040 4041 4042

	/* MAC Cause register should be cleared */
	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);

4043
	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4044

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	/* Even though it might look weird, when we're configured in
	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
	 */
	switch(phy_mode) {
	case PHY_INTERFACE_MODE_QSGMII:
		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
		break;
	case PHY_INTERFACE_MODE_SGMII:
		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
		break;
	case PHY_INTERFACE_MODE_RGMII:
	case PHY_INTERFACE_MODE_RGMII_ID:
		ctrl |= MVNETA_GMAC2_PORT_RGMII;
		break;
	default:
		return -EINVAL;
	}
4064 4065

	/* Cancel Port Reset */
4066 4067
	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
4068 4069 4070 4071

	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
		MVNETA_GMAC2_PORT_RESET) != 0)
		continue;
4072 4073

	return 0;
4074 4075 4076
}

/* Device initialization routine */
G
Greg KH 已提交
4077
static int mvneta_probe(struct platform_device *pdev)
4078 4079
{
	const struct mbus_dram_target_info *dram_target_info;
4080
	struct resource *res;
4081 4082
	struct device_node *dn = pdev->dev.of_node;
	struct device_node *phy_node;
4083
	struct device_node *bm_node;
4084 4085
	struct mvneta_port *pp;
	struct net_device *dev;
4086 4087 4088
	const char *dt_mac_addr;
	char hw_mac_addr[ETH_ALEN];
	const char *mac_from;
4089
	const char *managed;
4090
	int tx_csum_limit;
4091 4092
	int phy_mode;
	int err;
4093
	int cpu;
4094

4095
	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	if (!dev)
		return -ENOMEM;

	dev->irq = irq_of_parse_and_map(dn, 0);
	if (dev->irq == 0) {
		err = -EINVAL;
		goto err_free_netdev;
	}

	phy_node = of_parse_phandle(dn, "phy", 0);
	if (!phy_node) {
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
		if (!of_phy_is_fixed_link(dn)) {
			dev_err(&pdev->dev, "no PHY specified\n");
			err = -ENODEV;
			goto err_free_irq;
		}

		err = of_phy_register_fixed_link(dn);
		if (err < 0) {
			dev_err(&pdev->dev, "cannot register fixed PHY\n");
			goto err_free_irq;
		}

		/* In the case of a fixed PHY, the DT node associated
		 * to the PHY is the Ethernet MAC DT node.
		 */
4122
		phy_node = of_node_get(dn);
4123 4124 4125 4126 4127 4128
	}

	phy_mode = of_get_phy_mode(dn);
	if (phy_mode < 0) {
		dev_err(&pdev->dev, "incorrect phy-mode\n");
		err = -EINVAL;
4129
		goto err_put_phy_node;
4130 4131 4132 4133 4134 4135
	}

	dev->tx_queue_len = MVNETA_MAX_TXD;
	dev->watchdog_timeo = 5 * HZ;
	dev->netdev_ops = &mvneta_netdev_ops;

4136
	dev->ethtool_ops = &mvneta_eth_tool_ops;
4137 4138

	pp = netdev_priv(dev);
4139
	spin_lock_init(&pp->lock);
4140 4141
	pp->phy_node = phy_node;
	pp->phy_interface = phy_mode;
4142 4143 4144 4145

	err = of_property_read_string(dn, "managed", &managed);
	pp->use_inband_status = (err == 0 &&
				 strcmp(managed, "in-band-status") == 0);
4146

4147 4148
	pp->rxq_def = rxq_def;

4149 4150 4151 4152 4153 4154 4155
	/* Set RX packet offset correction for platforms, whose
	 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
	 * platforms and 0B for 32-bit ones.
	 */
	pp->rx_offset_correction =
		max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);

4156 4157
	pp->indir[0] = rxq_def;

4158 4159 4160 4161
	/* Get special SoC configurations */
	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
		pp->neta_armada3700 = true;

4162 4163 4164
	pp->clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(pp->clk))
		pp->clk = devm_clk_get(&pdev->dev, NULL);
T
Thomas Petazzoni 已提交
4165 4166
	if (IS_ERR(pp->clk)) {
		err = PTR_ERR(pp->clk);
4167
		goto err_put_phy_node;
T
Thomas Petazzoni 已提交
4168 4169 4170 4171
	}

	clk_prepare_enable(pp->clk);

4172 4173 4174 4175
	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
	if (!IS_ERR(pp->clk_bus))
		clk_prepare_enable(pp->clk_bus);

4176 4177 4178 4179
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	pp->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(pp->base)) {
		err = PTR_ERR(pp->base);
4180 4181 4182
		goto err_clk;
	}

4183 4184 4185 4186 4187 4188 4189
	/* Alloc per-cpu port structure */
	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
	if (!pp->ports) {
		err = -ENOMEM;
		goto err_clk;
	}

4190
	/* Alloc per-cpu stats */
4191
	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4192 4193
	if (!pp->stats) {
		err = -ENOMEM;
4194
		goto err_free_ports;
4195 4196
	}

4197
	dt_mac_addr = of_get_mac_address(dn);
4198
	if (dt_mac_addr) {
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
		mac_from = "device tree";
		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
	} else {
		mvneta_get_mac_addr(pp, hw_mac_addr);
		if (is_valid_ether_addr(hw_mac_addr)) {
			mac_from = "hardware";
			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
		} else {
			mac_from = "random";
			eth_hw_addr_random(dev);
		}
	}

4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
		if (tx_csum_limit < 0 ||
		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
			dev_info(&pdev->dev,
				 "Wrong TX csum limit in DT, set to %dB\n",
				 MVNETA_TX_CSUM_DEF_SIZE);
		}
	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
	} else {
		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
	}

	pp->tx_csum_limit = tx_csum_limit;
4227

4228
	dram_target_info = mv_mbus_dram_info();
4229 4230 4231 4232 4233
	/* Armada3700 requires setting default configuration of Mbus
	 * windows, however without using filled mbus_dram_target_info
	 * structure.
	 */
	if (dram_target_info || pp->neta_armada3700)
4234 4235
		mvneta_conf_mbus_windows(pp, dram_target_info);

4236 4237 4238 4239 4240 4241
	pp->tx_ring_size = MVNETA_MAX_TXD;
	pp->rx_ring_size = MVNETA_MAX_RXD;

	pp->dev = dev;
	SET_NETDEV_DEV(dev, &pdev->dev);

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
	pp->id = global_port_id++;

	/* Obtain access to BM resources if enabled and already initialized */
	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
	if (bm_node && bm_node->data) {
		pp->bm_priv = bm_node->data;
		err = mvneta_bm_port_init(pdev, pp);
		if (err < 0) {
			dev_info(&pdev->dev, "use SW buffer management\n");
			pp->bm_priv = NULL;
		}
	}
4254
	of_node_put(bm_node);
4255

4256 4257
	err = mvneta_init(&pdev->dev, pp);
	if (err < 0)
4258
		goto err_netdev;
4259 4260 4261 4262

	err = mvneta_port_power_up(pp, phy_mode);
	if (err < 0) {
		dev_err(&pdev->dev, "can't power up port\n");
4263
		goto err_netdev;
4264
	}
4265

4266 4267 4268 4269 4270 4271 4272 4273 4274
	/* Armada3700 network controller does not support per-cpu
	 * operation, so only single NAPI should be initialized.
	 */
	if (pp->neta_armada3700) {
		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
	} else {
		for_each_present_cpu(cpu) {
			struct mvneta_pcpu_port *port =
				per_cpu_ptr(pp->ports, cpu);
4275

4276 4277 4278 4279
			netif_napi_add(dev, &port->napi, mvneta_poll,
				       NAPI_POLL_WEIGHT);
			port->pp = pp;
		}
4280
	}
4281

4282
	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4283 4284
	dev->hw_features |= dev->features;
	dev->vlan_features |= dev->features;
4285
	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4286
	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4287

4288 4289 4290 4291 4292
	/* MTU range: 68 - 9676 */
	dev->min_mtu = ETH_MIN_MTU;
	/* 9676 == 9700 - 20 and rounding to 8 */
	dev->max_mtu = 9676;

4293 4294 4295
	err = register_netdev(dev);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to register\n");
4296
		goto err_free_stats;
4297 4298
	}

4299 4300
	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
		    dev->dev_addr);
4301 4302 4303

	platform_set_drvdata(pdev, pp->dev);

4304 4305 4306 4307
	if (pp->use_inband_status) {
		struct phy_device *phy = of_phy_find_device(dn);

		mvneta_fixed_link_update(pp, phy);
4308

A
Andrew Lunn 已提交
4309
		put_device(&phy->mdio.dev);
4310 4311
	}

4312 4313
	return 0;

4314 4315 4316 4317 4318 4319 4320
err_netdev:
	unregister_netdev(dev);
	if (pp->bm_priv) {
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
				       1 << pp->id);
	}
4321 4322
err_free_stats:
	free_percpu(pp->stats);
4323 4324
err_free_ports:
	free_percpu(pp->ports);
4325
err_clk:
4326
	clk_disable_unprepare(pp->clk_bus);
4327
	clk_disable_unprepare(pp->clk);
4328 4329
err_put_phy_node:
	of_node_put(phy_node);
4330 4331
	if (of_phy_is_fixed_link(dn))
		of_phy_deregister_fixed_link(dn);
4332 4333 4334 4335 4336 4337 4338 4339
err_free_irq:
	irq_dispose_mapping(dev->irq);
err_free_netdev:
	free_netdev(dev);
	return err;
}

/* Device removal routine */
G
Greg KH 已提交
4340
static int mvneta_remove(struct platform_device *pdev)
4341 4342
{
	struct net_device  *dev = platform_get_drvdata(pdev);
4343
	struct device_node *dn = pdev->dev.of_node;
4344 4345 4346
	struct mvneta_port *pp = netdev_priv(dev);

	unregister_netdev(dev);
4347
	clk_disable_unprepare(pp->clk_bus);
T
Thomas Petazzoni 已提交
4348
	clk_disable_unprepare(pp->clk);
4349
	free_percpu(pp->ports);
4350
	free_percpu(pp->stats);
4351 4352
	if (of_phy_is_fixed_link(dn))
		of_phy_deregister_fixed_link(dn);
4353
	irq_dispose_mapping(dev->irq);
4354
	of_node_put(pp->phy_node);
4355 4356
	free_netdev(dev);

4357 4358 4359 4360 4361 4362
	if (pp->bm_priv) {
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
				       1 << pp->id);
	}

4363 4364 4365 4366 4367
	return 0;
}

static const struct of_device_id mvneta_match[] = {
	{ .compatible = "marvell,armada-370-neta" },
4368
	{ .compatible = "marvell,armada-xp-neta" },
4369
	{ .compatible = "marvell,armada-3700-neta" },
4370 4371 4372 4373 4374 4375
	{ }
};
MODULE_DEVICE_TABLE(of, mvneta_match);

static struct platform_driver mvneta_driver = {
	.probe = mvneta_probe,
G
Greg KH 已提交
4376
	.remove = mvneta_remove,
4377 4378 4379 4380 4381 4382
	.driver = {
		.name = MVNETA_DRIVER_NAME,
		.of_match_table = mvneta_match,
	},
};

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
static int __init mvneta_driver_init(void)
{
	int ret;

	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
				      mvneta_cpu_online,
				      mvneta_cpu_down_prepare);
	if (ret < 0)
		goto out;
	online_hpstate = ret;
	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
				      NULL, mvneta_cpu_dead);
	if (ret)
		goto err_dead;

	ret = platform_driver_register(&mvneta_driver);
	if (ret)
		goto err;
	return 0;

err:
	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
err_dead:
	cpuhp_remove_multi_state(online_hpstate);
out:
	return ret;
}
module_init(mvneta_driver_init);

static void __exit mvneta_driver_exit(void)
{
	platform_driver_unregister(&mvneta_driver);
	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
	cpuhp_remove_multi_state(online_hpstate);
}
module_exit(mvneta_driver_exit);
4419 4420 4421 4422 4423 4424 4425 4426 4427

MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
MODULE_LICENSE("GPL");

module_param(rxq_number, int, S_IRUGO);
module_param(txq_number, int, S_IRUGO);

module_param(rxq_def, int, S_IRUGO);
4428
module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);