journal.c 17.5 KB
Newer Older
K
Kent Overstreet 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * bcache journalling code, for btree insertions
 *
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"
#include "request.h"

/*
 * Journal replay/recovery:
 *
 * This code is all driven from run_cache_set(); we first read the journal
 * entries, do some other stuff, then we mark all the keys in the journal
 * entries (same as garbage collection would), then we replay them - reinserting
 * them into the cache in precisely the same order as they appear in the
 * journal.
 *
 * We only journal keys that go in leaf nodes, which simplifies things quite a
 * bit.
 */

static void journal_read_endio(struct bio *bio, int error)
{
	struct closure *cl = bio->bi_private;
	closure_put(cl);
}

static int journal_read_bucket(struct cache *ca, struct list_head *list,
			       struct btree_op *op, unsigned bucket_index)
{
	struct journal_device *ja = &ca->journal;
	struct bio *bio = &ja->bio;

	struct journal_replay *i;
	struct jset *j, *data = ca->set->journal.w[0].data;
	unsigned len, left, offset = 0;
	int ret = 0;
	sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);

	pr_debug("reading %llu", (uint64_t) bucket);

	while (offset < ca->sb.bucket_size) {
reread:		left = ca->sb.bucket_size - offset;
		len = min_t(unsigned, left, PAGE_SECTORS * 8);

		bio_reset(bio);
		bio->bi_sector	= bucket + offset;
		bio->bi_bdev	= ca->bdev;
		bio->bi_rw	= READ;
		bio->bi_size	= len << 9;

		bio->bi_end_io	= journal_read_endio;
		bio->bi_private = &op->cl;
		bio_map(bio, data);

		closure_bio_submit(bio, &op->cl, ca);
		closure_sync(&op->cl);

		/* This function could be simpler now since we no longer write
		 * journal entries that overlap bucket boundaries; this means
		 * the start of a bucket will always have a valid journal entry
		 * if it has any journal entries at all.
		 */

		j = data;
		while (len) {
			struct list_head *where;
			size_t blocks, bytes = set_bytes(j);

			if (j->magic != jset_magic(ca->set))
				return ret;

			if (bytes > left << 9)
				return ret;

			if (bytes > len << 9)
				goto reread;

			if (j->csum != csum_set(j))
				return ret;

			blocks = set_blocks(j, ca->set);

			while (!list_empty(list)) {
				i = list_first_entry(list,
					struct journal_replay, list);
				if (i->j.seq >= j->last_seq)
					break;
				list_del(&i->list);
				kfree(i);
			}

			list_for_each_entry_reverse(i, list, list) {
				if (j->seq == i->j.seq)
					goto next_set;

				if (j->seq < i->j.last_seq)
					goto next_set;

				if (j->seq > i->j.seq) {
					where = &i->list;
					goto add;
				}
			}

			where = list;
add:
			i = kmalloc(offsetof(struct journal_replay, j) +
				    bytes, GFP_KERNEL);
			if (!i)
				return -ENOMEM;
			memcpy(&i->j, j, bytes);
			list_add(&i->list, where);
			ret = 1;

			ja->seq[bucket_index] = j->seq;
next_set:
			offset	+= blocks * ca->sb.block_size;
			len	-= blocks * ca->sb.block_size;
			j = ((void *) j) + blocks * block_bytes(ca);
		}
	}

	return ret;
}

int bch_journal_read(struct cache_set *c, struct list_head *list,
			struct btree_op *op)
{
#define read_bucket(b)							\
	({								\
		int ret = journal_read_bucket(ca, list, op, b);		\
		__set_bit(b, bitmap);					\
		if (ret < 0)						\
			return ret;					\
		ret;							\
	})

	struct cache *ca;
	unsigned iter;

	for_each_cache(ca, c, iter) {
		struct journal_device *ja = &ca->journal;
		unsigned long bitmap[SB_JOURNAL_BUCKETS / BITS_PER_LONG];
		unsigned i, l, r, m;
		uint64_t seq;

		bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
		pr_debug("%u journal buckets", ca->sb.njournal_buckets);

		/* Read journal buckets ordered by golden ratio hash to quickly
		 * find a sequence of buckets with valid journal entries
		 */
		for (i = 0; i < ca->sb.njournal_buckets; i++) {
			l = (i * 2654435769U) % ca->sb.njournal_buckets;

			if (test_bit(l, bitmap))
				break;

			if (read_bucket(l))
				goto bsearch;
		}

		/* If that fails, check all the buckets we haven't checked
		 * already
		 */
		pr_debug("falling back to linear search");

		for (l = 0; l < ca->sb.njournal_buckets; l++) {
			if (test_bit(l, bitmap))
				continue;

			if (read_bucket(l))
				goto bsearch;
		}
bsearch:
		/* Binary search */
		m = r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
		pr_debug("starting binary search, l %u r %u", l, r);

		while (l + 1 < r) {
			m = (l + r) >> 1;

			if (read_bucket(m))
				l = m;
			else
				r = m;
		}

		/* Read buckets in reverse order until we stop finding more
		 * journal entries
		 */
		pr_debug("finishing up");
		l = m;

		while (1) {
			if (!l--)
				l = ca->sb.njournal_buckets - 1;

			if (l == m)
				break;

			if (test_bit(l, bitmap))
				continue;

			if (!read_bucket(l))
				break;
		}

		seq = 0;

		for (i = 0; i < ca->sb.njournal_buckets; i++)
			if (ja->seq[i] > seq) {
				seq = ja->seq[i];
				ja->cur_idx = ja->discard_idx =
					ja->last_idx = i;

			}
	}

	c->journal.seq = list_entry(list->prev,
				    struct journal_replay,
				    list)->j.seq;

	return 0;
#undef read_bucket
}

void bch_journal_mark(struct cache_set *c, struct list_head *list)
{
	atomic_t p = { 0 };
	struct bkey *k;
	struct journal_replay *i;
	struct journal *j = &c->journal;
	uint64_t last = j->seq;

	/*
	 * journal.pin should never fill up - we never write a journal
	 * entry when it would fill up. But if for some reason it does, we
	 * iterate over the list in reverse order so that we can just skip that
	 * refcount instead of bugging.
	 */

	list_for_each_entry_reverse(i, list, list) {
		BUG_ON(last < i->j.seq);
		i->pin = NULL;

		while (last-- != i->j.seq)
			if (fifo_free(&j->pin) > 1) {
				fifo_push_front(&j->pin, p);
				atomic_set(&fifo_front(&j->pin), 0);
			}

		if (fifo_free(&j->pin) > 1) {
			fifo_push_front(&j->pin, p);
			i->pin = &fifo_front(&j->pin);
			atomic_set(i->pin, 1);
		}

		for (k = i->j.start;
		     k < end(&i->j);
		     k = bkey_next(k)) {
			unsigned j;

			for (j = 0; j < KEY_PTRS(k); j++) {
				struct bucket *g = PTR_BUCKET(c, k, j);
				atomic_inc(&g->pin);

				if (g->prio == BTREE_PRIO &&
				    !ptr_stale(c, k, j))
					g->prio = INITIAL_PRIO;
			}

			__bch_btree_mark_key(c, 0, k);
		}
	}
}

int bch_journal_replay(struct cache_set *s, struct list_head *list,
			  struct btree_op *op)
{
	int ret = 0, keys = 0, entries = 0;
	struct bkey *k;
	struct journal_replay *i =
		list_entry(list->prev, struct journal_replay, list);

	uint64_t start = i->j.last_seq, end = i->j.seq, n = start;

	list_for_each_entry(i, list, list) {
		BUG_ON(i->pin && atomic_read(i->pin) != 1);

		if (n != i->j.seq)
K
Kent Overstreet 已提交
296 297 298
			pr_err(
		"journal entries %llu-%llu missing! (replaying %llu-%llu)\n",
		n, i->j.seq - 1, start, end);
K
Kent Overstreet 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

		for (k = i->j.start;
		     k < end(&i->j);
		     k = bkey_next(k)) {
			pr_debug("%s", pkey(k));
			bkey_copy(op->keys.top, k);
			bch_keylist_push(&op->keys);

			op->journal = i->pin;
			atomic_inc(op->journal);

			ret = bch_btree_insert(op, s);
			if (ret)
				goto err;

			BUG_ON(!bch_keylist_empty(&op->keys));
			keys++;

			cond_resched();
		}

		if (i->pin)
			atomic_dec(i->pin);
		n = i->j.seq + 1;
		entries++;
	}

	pr_info("journal replay done, %i keys in %i entries, seq %llu",
		keys, entries, end);

	while (!list_empty(list)) {
		i = list_first_entry(list, struct journal_replay, list);
		list_del(&i->list);
		kfree(i);
	}
err:
	closure_sync(&op->cl);
	return ret;
}

/* Journalling */

static void btree_flush_write(struct cache_set *c)
{
	/*
	 * Try to find the btree node with that references the oldest journal
	 * entry, best is our current candidate and is locked if non NULL:
	 */
	struct btree *b, *best = NULL;
	unsigned iter;

	for_each_cached_btree(b, c, iter) {
		if (!down_write_trylock(&b->lock))
			continue;

		if (!btree_node_dirty(b) ||
		    !btree_current_write(b)->journal) {
			rw_unlock(true, b);
			continue;
		}

		if (!best)
			best = b;
		else if (journal_pin_cmp(c,
					 btree_current_write(best),
					 btree_current_write(b))) {
			rw_unlock(true, best);
			best = b;
		} else
			rw_unlock(true, b);
	}

	if (best)
		goto out;

	/* We can't find the best btree node, just pick the first */
	list_for_each_entry(b, &c->btree_cache, list)
		if (!b->level && btree_node_dirty(b)) {
			best = b;
			rw_lock(true, best, best->level);
			goto found;
		}

out:
	if (!best)
		return;
found:
	if (btree_node_dirty(best))
		bch_btree_write(best, true, NULL);
	rw_unlock(true, best);
}

#define last_seq(j)	((j)->seq - fifo_used(&(j)->pin) + 1)

static void journal_discard_endio(struct bio *bio, int error)
{
	struct journal_device *ja =
		container_of(bio, struct journal_device, discard_bio);
	struct cache *ca = container_of(ja, struct cache, journal);

	atomic_set(&ja->discard_in_flight, DISCARD_DONE);

	closure_wake_up(&ca->set->journal.wait);
	closure_put(&ca->set->cl);
}

static void journal_discard_work(struct work_struct *work)
{
	struct journal_device *ja =
		container_of(work, struct journal_device, discard_work);

	submit_bio(0, &ja->discard_bio);
}

static void do_journal_discard(struct cache *ca)
{
	struct journal_device *ja = &ca->journal;
	struct bio *bio = &ja->discard_bio;

	if (!ca->discard) {
		ja->discard_idx = ja->last_idx;
		return;
	}

	switch (atomic_read(&ja->discard_in_flight) == DISCARD_IN_FLIGHT) {
	case DISCARD_IN_FLIGHT:
		return;

	case DISCARD_DONE:
		ja->discard_idx = (ja->discard_idx + 1) %
			ca->sb.njournal_buckets;

		atomic_set(&ja->discard_in_flight, DISCARD_READY);
		/* fallthrough */

	case DISCARD_READY:
		if (ja->discard_idx == ja->last_idx)
			return;

		atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);

		bio_init(bio);
		bio->bi_sector		= bucket_to_sector(ca->set,
K
Kent Overstreet 已提交
442
						ca->sb.d[ja->discard_idx]);
K
Kent Overstreet 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
		bio->bi_bdev		= ca->bdev;
		bio->bi_rw		= REQ_WRITE|REQ_DISCARD;
		bio->bi_max_vecs	= 1;
		bio->bi_io_vec		= bio->bi_inline_vecs;
		bio->bi_size		= bucket_bytes(ca);
		bio->bi_end_io		= journal_discard_endio;

		closure_get(&ca->set->cl);
		INIT_WORK(&ja->discard_work, journal_discard_work);
		schedule_work(&ja->discard_work);
	}
}

static void journal_reclaim(struct cache_set *c)
{
	struct bkey *k = &c->journal.key;
	struct cache *ca;
	uint64_t last_seq;
	unsigned iter, n = 0;
	atomic_t p;

	while (!atomic_read(&fifo_front(&c->journal.pin)))
		fifo_pop(&c->journal.pin, p);

	last_seq = last_seq(&c->journal);

	/* Update last_idx */

	for_each_cache(ca, c, iter) {
		struct journal_device *ja = &ca->journal;

		while (ja->last_idx != ja->cur_idx &&
		       ja->seq[ja->last_idx] < last_seq)
			ja->last_idx = (ja->last_idx + 1) %
				ca->sb.njournal_buckets;
	}

	for_each_cache(ca, c, iter)
		do_journal_discard(ca);

	if (c->journal.blocks_free)
		return;

	/*
	 * Allocate:
	 * XXX: Sort by free journal space
	 */

	for_each_cache(ca, c, iter) {
		struct journal_device *ja = &ca->journal;
		unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;

		/* No space available on this device */
		if (next == ja->discard_idx)
			continue;

		ja->cur_idx = next;
		k->ptr[n++] = PTR(0,
				  bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
				  ca->sb.nr_this_dev);
	}

	bkey_init(k);
	SET_KEY_PTRS(k, n);

	if (n)
		c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;

	if (!journal_full(&c->journal))
		__closure_wake_up(&c->journal.wait);
}

void bch_journal_next(struct journal *j)
{
	atomic_t p = { 1 };

	j->cur = (j->cur == j->w)
		? &j->w[1]
		: &j->w[0];

	/*
	 * The fifo_push() needs to happen at the same time as j->seq is
	 * incremented for last_seq() to be calculated correctly
	 */
	BUG_ON(!fifo_push(&j->pin, p));
	atomic_set(&fifo_back(&j->pin), 1);

	j->cur->data->seq	= ++j->seq;
	j->cur->need_write	= false;
	j->cur->data->keys	= 0;

	if (fifo_full(&j->pin))
		pr_debug("journal_pin full (%zu)", fifo_used(&j->pin));
}

static void journal_write_endio(struct bio *bio, int error)
{
	struct journal_write *w = bio->bi_private;

	cache_set_err_on(error, w->c, "journal io error");
	closure_put(&w->c->journal.io.cl);
}

static void journal_write(struct closure *);

static void journal_write_done(struct closure *cl)
{
	struct journal *j = container_of(cl, struct journal, io.cl);
	struct cache_set *c = container_of(j, struct cache_set, journal);

	struct journal_write *w = (j->cur == j->w)
		? &j->w[1]
		: &j->w[0];

	__closure_wake_up(&w->wait);

	if (c->journal_delay_ms)
		closure_delay(&j->io, msecs_to_jiffies(c->journal_delay_ms));

	continue_at(cl, journal_write, system_wq);
}

static void journal_write_unlocked(struct closure *cl)
{
	struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl);
	struct cache *ca;
	struct journal_write *w = c->journal.cur;
	struct bkey *k = &c->journal.key;
	unsigned i, sectors = set_blocks(w->data, c) * c->sb.block_size;

	struct bio *bio;
	struct bio_list list;
	bio_list_init(&list);

	if (!w->need_write) {
		/*
		 * XXX: have to unlock closure before we unlock journal lock,
		 * else we race with bch_journal(). But this way we race
		 * against cache set unregister. Doh.
		 */
		set_closure_fn(cl, NULL, NULL);
		closure_sub(cl, CLOSURE_RUNNING + 1);
		spin_unlock(&c->journal.lock);
		return;
	} else if (journal_full(&c->journal)) {
		journal_reclaim(c);
		spin_unlock(&c->journal.lock);

		btree_flush_write(c);
		continue_at(cl, journal_write, system_wq);
	}

	c->journal.blocks_free -= set_blocks(w->data, c);

	w->data->btree_level = c->root->level;

	bkey_copy(&w->data->btree_root, &c->root->key);
	bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);

	for_each_cache(ca, c, i)
		w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];

	w->data->magic		= jset_magic(c);
	w->data->version	= BCACHE_JSET_VERSION;
	w->data->last_seq	= last_seq(&c->journal);
	w->data->csum		= csum_set(w->data);

	for (i = 0; i < KEY_PTRS(k); i++) {
		ca = PTR_CACHE(c, k, i);
		bio = &ca->journal.bio;

		atomic_long_add(sectors, &ca->meta_sectors_written);

		bio_reset(bio);
		bio->bi_sector	= PTR_OFFSET(k, i);
		bio->bi_bdev	= ca->bdev;
		bio->bi_rw	= REQ_WRITE|REQ_SYNC|REQ_META|REQ_FLUSH;
		bio->bi_size	= sectors << 9;

		bio->bi_end_io	= journal_write_endio;
		bio->bi_private = w;
		bio_map(bio, w->data);

		trace_bcache_journal_write(bio);
		bio_list_add(&list, bio);

		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);

		ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
	}

	atomic_dec_bug(&fifo_back(&c->journal.pin));
	bch_journal_next(&c->journal);
	journal_reclaim(c);

	spin_unlock(&c->journal.lock);

	while ((bio = bio_list_pop(&list)))
		closure_bio_submit(bio, cl, c->cache[0]);

	continue_at(cl, journal_write_done, NULL);
}

static void journal_write(struct closure *cl)
{
	struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl);

	spin_lock(&c->journal.lock);
	journal_write_unlocked(cl);
}

static void __journal_try_write(struct cache_set *c, bool noflush)
{
	struct closure *cl = &c->journal.io.cl;

	if (!closure_trylock(cl, &c->cl))
		spin_unlock(&c->journal.lock);
	else if (noflush && journal_full(&c->journal)) {
		spin_unlock(&c->journal.lock);
		continue_at(cl, journal_write, system_wq);
	} else
		journal_write_unlocked(cl);
}

#define journal_try_write(c)	__journal_try_write(c, false)

void bch_journal_meta(struct cache_set *c, struct closure *cl)
{
	struct journal_write *w;

	if (CACHE_SYNC(&c->sb)) {
		spin_lock(&c->journal.lock);

		w = c->journal.cur;
		w->need_write = true;

		if (cl)
			BUG_ON(!closure_wait(&w->wait, cl));

		__journal_try_write(c, true);
	}
}

/*
 * Entry point to the journalling code - bio_insert() and btree_invalidate()
 * pass bch_journal() a list of keys to be journalled, and then
 * bch_journal() hands those same keys off to btree_insert_async()
 */

void bch_journal(struct closure *cl)
{
	struct btree_op *op = container_of(cl, struct btree_op, cl);
	struct cache_set *c = op->c;
	struct journal_write *w;
	size_t b, n = ((uint64_t *) op->keys.top) - op->keys.list;

	if (op->type != BTREE_INSERT ||
	    !CACHE_SYNC(&c->sb))
		goto out;

	/*
	 * If we're looping because we errored, might already be waiting on
	 * another journal write:
	 */
	while (atomic_read(&cl->parent->remaining) & CLOSURE_WAITING)
		closure_sync(cl->parent);

	spin_lock(&c->journal.lock);

	if (journal_full(&c->journal)) {
		/* XXX: tracepoint */
		closure_wait(&c->journal.wait, cl);

		journal_reclaim(c);
		spin_unlock(&c->journal.lock);

		btree_flush_write(c);
		continue_at(cl, bch_journal, bcache_wq);
	}

	w = c->journal.cur;
	w->need_write = true;
	b = __set_blocks(w->data, w->data->keys + n, c);

	if (b * c->sb.block_size > PAGE_SECTORS << JSET_BITS ||
	    b > c->journal.blocks_free) {
		/* XXX: If we were inserting so many keys that they won't fit in
		 * an _empty_ journal write, we'll deadlock. For now, handle
		 * this in bch_keylist_realloc() - but something to think about.
		 */
		BUG_ON(!w->data->keys);

		/* XXX: tracepoint */
		BUG_ON(!closure_wait(&w->wait, cl));

		closure_flush(&c->journal.io);

		journal_try_write(c);
		continue_at(cl, bch_journal, bcache_wq);
	}

	memcpy(end(w->data), op->keys.list, n * sizeof(uint64_t));
	w->data->keys += n;

	op->journal = &fifo_back(&c->journal.pin);
	atomic_inc(op->journal);

	if (op->flush_journal) {
		closure_flush(&c->journal.io);
		closure_wait(&w->wait, cl->parent);
	}

	journal_try_write(c);
out:
	bch_btree_insert_async(cl);
}

void bch_journal_free(struct cache_set *c)
{
	free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
	free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
	free_fifo(&c->journal.pin);
}

int bch_journal_alloc(struct cache_set *c)
{
	struct journal *j = &c->journal;

	closure_init_unlocked(&j->io);
	spin_lock_init(&j->lock);

	c->journal_delay_ms = 100;

	j->w[0].c = c;
	j->w[1].c = c;

	if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
	    !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) ||
	    !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)))
		return -ENOMEM;

	return 0;
}