af9033.c 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Afatech AF9033 demodulator driver
 *
 * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License along
 *    with this program; if not, write to the Free Software Foundation, Inc.,
 *    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "af9033_priv.h"

struct af9033_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend fe;
	struct af9033_config cfg;

29
	u32 frequency;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	u32 bandwidth_hz;
	bool ts_mode_parallel;
	bool ts_mode_serial;
};

/* write multiple registers */
static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
		int len)
{
	int ret;
	u8 buf[3 + len];
	struct i2c_msg msg[1] = {
		{
			.addr = state->cfg.i2c_addr,
			.flags = 0,
			.len = sizeof(buf),
			.buf = buf,
		}
	};

	buf[0] = (reg >> 16) & 0xff;
	buf[1] = (reg >>  8) & 0xff;
	buf[2] = (reg >>  0) & 0xff;
	memcpy(&buf[3], val, len);

	ret = i2c_transfer(state->i2c, msg, 1);
	if (ret == 1) {
		ret = 0;
	} else {
		printk(KERN_WARNING "%s: i2c wr failed=%d reg=%06x len=%d\n",
				__func__, ret, reg, len);
		ret = -EREMOTEIO;
	}

	return ret;
}

/* read multiple registers */
static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
{
	int ret;
	u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
			(reg >> 0) & 0xff };
	struct i2c_msg msg[2] = {
		{
			.addr = state->cfg.i2c_addr,
			.flags = 0,
			.len = sizeof(buf),
			.buf = buf
		}, {
			.addr = state->cfg.i2c_addr,
			.flags = I2C_M_RD,
			.len = len,
			.buf = val
		}
	};

	ret = i2c_transfer(state->i2c, msg, 2);
	if (ret == 2) {
		ret = 0;
	} else {
		printk(KERN_WARNING "%s: i2c rd failed=%d reg=%06x len=%d\n",
				__func__, ret, reg, len);
		ret = -EREMOTEIO;
	}

	return ret;
}


/* write single register */
static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
{
	return af9033_wr_regs(state, reg, &val, 1);
}

/* read single register */
static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
{
	return af9033_rd_regs(state, reg, val, 1);
}

/* write single register with mask */
static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
		u8 mask)
{
	int ret;
	u8 tmp;

	/* no need for read if whole reg is written */
	if (mask != 0xff) {
		ret = af9033_rd_regs(state, reg, &tmp, 1);
		if (ret)
			return ret;

		val &= mask;
		tmp &= ~mask;
		val |= tmp;
	}

	return af9033_wr_regs(state, reg, &val, 1);
}

/* read single register with mask */
static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
		u8 mask)
{
	int ret, i;
	u8 tmp;

	ret = af9033_rd_regs(state, reg, &tmp, 1);
	if (ret)
		return ret;

	tmp &= mask;

	/* find position of the first bit */
	for (i = 0; i < 8; i++) {
		if ((mask >> i) & 0x01)
			break;
	}
	*val = tmp >> i;

	return 0;
}

static u32 af9033_div(u32 a, u32 b, u32 x)
{
	u32 r = 0, c = 0, i;

	pr_debug("%s: a=%d b=%d x=%d\n", __func__, a, b, x);

	if (a > b) {
		c = a / b;
		a = a - c * b;
	}

	for (i = 0; i < x; i++) {
		if (a >= b) {
			r += 1;
			a -= b;
		}
		a <<= 1;
		r <<= 1;
	}
	r = (c << (u32)x) + r;

	pr_debug("%s: a=%d b=%d x=%d r=%d r=%x\n", __func__, a, b, x, r, r);

	return r;
}

static void af9033_release(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;

	kfree(state);
}

static int af9033_init(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i, len;
	const struct reg_val *init;
	u8 buf[4];
	u32 adc_cw, clock_cw;
	struct reg_val_mask tab[] = {
		{ 0x80fb24, 0x00, 0x08 },
		{ 0x80004c, 0x00, 0xff },
		{ 0x00f641, state->cfg.tuner, 0xff },
		{ 0x80f5ca, 0x01, 0x01 },
		{ 0x80f715, 0x01, 0x01 },
		{ 0x00f41f, 0x04, 0x04 },
		{ 0x00f41a, 0x01, 0x01 },
		{ 0x80f731, 0x00, 0x01 },
		{ 0x00d91e, 0x00, 0x01 },
		{ 0x00d919, 0x00, 0x01 },
		{ 0x80f732, 0x00, 0x01 },
		{ 0x00d91f, 0x00, 0x01 },
		{ 0x00d91a, 0x00, 0x01 },
		{ 0x80f730, 0x00, 0x01 },
		{ 0x80f778, 0x00, 0xff },
		{ 0x80f73c, 0x01, 0x01 },
		{ 0x80f776, 0x00, 0x01 },
		{ 0x00d8fd, 0x01, 0xff },
		{ 0x00d830, 0x01, 0xff },
		{ 0x00d831, 0x00, 0xff },
		{ 0x00d832, 0x00, 0xff },
		{ 0x80f985, state->ts_mode_serial, 0x01 },
		{ 0x80f986, state->ts_mode_parallel, 0x01 },
		{ 0x00d827, 0x00, 0xff },
		{ 0x00d829, 0x00, 0xff },
	};

	/* program clock control */
	clock_cw = af9033_div(state->cfg.clock, 1000000ul, 19ul);
	buf[0] = (clock_cw >>  0) & 0xff;
	buf[1] = (clock_cw >>  8) & 0xff;
	buf[2] = (clock_cw >> 16) & 0xff;
	buf[3] = (clock_cw >> 24) & 0xff;

	pr_debug("%s: clock=%d clock_cw=%08x\n", __func__, state->cfg.clock,
			clock_cw);

	ret = af9033_wr_regs(state, 0x800025, buf, 4);
	if (ret < 0)
		goto err;

	/* program ADC control */
	for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
		if (clock_adc_lut[i].clock == state->cfg.clock)
			break;
	}

	adc_cw = af9033_div(clock_adc_lut[i].adc, 1000000ul, 19ul);
	buf[0] = (adc_cw >>  0) & 0xff;
	buf[1] = (adc_cw >>  8) & 0xff;
	buf[2] = (adc_cw >> 16) & 0xff;

	pr_debug("%s: adc=%d adc_cw=%06x\n", __func__, clock_adc_lut[i].adc,
			adc_cw);

	ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
	if (ret < 0)
		goto err;

	/* program register table */
	for (i = 0; i < ARRAY_SIZE(tab); i++) {
		ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
				tab[i].mask);
		if (ret < 0)
			goto err;
	}

	/* settings for TS interface */
	if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
		ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
		if (ret < 0)
			goto err;
	} else {
		ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
		if (ret < 0)
			goto err;
	}

	/* load OFSM settings */
	pr_debug("%s: load ofsm settings\n", __func__);
	len = ARRAY_SIZE(ofsm_init);
	init = ofsm_init;
	for (i = 0; i < len; i++) {
		ret = af9033_wr_reg(state, init[i].reg, init[i].val);
		if (ret < 0)
			goto err;
	}

	/* load tuner specific settings */
	pr_debug("%s: load tuner specific settings\n",
			__func__);
	switch (state->cfg.tuner) {
	case AF9033_TUNER_TUA9001:
		len = ARRAY_SIZE(tuner_init_tua9001);
		init = tuner_init_tua9001;
		break;
301 302 303 304
	case AF9033_TUNER_FC0011:
		len = ARRAY_SIZE(tuner_init_fc0011);
		init = tuner_init_fc0011;
		break;
305 306 307 308
	case AF9033_TUNER_MXL5007T:
		len = ARRAY_SIZE(tuner_init_mxl5007t);
		init = tuner_init_mxl5007t;
		break;
309 310 311 312
	case AF9033_TUNER_TDA18218:
		len = ARRAY_SIZE(tuner_init_tda18218);
		init = tuner_init_tda18218;
		break;
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	default:
		pr_debug("%s: unsupported tuner ID=%d\n", __func__,
				state->cfg.tuner);
		ret = -ENODEV;
		goto err;
	}

	for (i = 0; i < len; i++) {
		ret = af9033_wr_reg(state, init[i].reg, init[i].val);
		if (ret < 0)
			goto err;
	}

	state->bandwidth_hz = 0; /* force to program all parameters */

	return 0;

err:
	pr_debug("%s: failed=%d\n", __func__, ret);

	return ret;
}

static int af9033_sleep(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i;
	u8 tmp;

	ret = af9033_wr_reg(state, 0x80004c, 1);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800000, 0);
	if (ret < 0)
		goto err;

	for (i = 100, tmp = 1; i && tmp; i--) {
		ret = af9033_rd_reg(state, 0x80004c, &tmp);
		if (ret < 0)
			goto err;

		usleep_range(200, 10000);
	}

358
	pr_debug("%s: loop=%d\n", __func__, i);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	if (i == 0) {
		ret = -ETIMEDOUT;
		goto err;
	}

	ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
	if (ret < 0)
		goto err;

	/* prevent current leak (?) */
	if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
		/* enable parallel TS */
		ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
		if (ret < 0)
			goto err;

		ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	pr_debug("%s: failed=%d\n", __func__, ret);

	return ret;
}

static int af9033_get_tune_settings(struct dvb_frontend *fe,
		struct dvb_frontend_tune_settings *fesettings)
{
	fesettings->min_delay_ms = 800;
	fesettings->step_size = 0;
	fesettings->max_drift = 0;

	return 0;
}

static int af9033_set_frontend(struct dvb_frontend *fe)
{
	struct af9033_state *state = fe->demodulator_priv;
	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
403
	int ret, i, spec_inv;
404
	u8 tmp, buf[3], bandwidth_reg_val;
405
	u32 if_frequency, freq_cw, adc_freq;
406 407 408 409

	pr_debug("%s: frequency=%d bandwidth_hz=%d\n", __func__, c->frequency,
			c->bandwidth_hz);

410 411
	state->frequency = c->frequency;

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	/* check bandwidth */
	switch (c->bandwidth_hz) {
	case 6000000:
		bandwidth_reg_val = 0x00;
		break;
	case 7000000:
		bandwidth_reg_val = 0x01;
		break;
	case 8000000:
		bandwidth_reg_val = 0x02;
		break;
	default:
		pr_debug("%s: invalid bandwidth_hz\n", __func__);
		ret = -EINVAL;
		goto err;
	}

	/* program tuner */
	if (fe->ops.tuner_ops.set_params)
		fe->ops.tuner_ops.set_params(fe);

	/* program CFOE coefficients */
	if (c->bandwidth_hz != state->bandwidth_hz) {
		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
			if (coeff_lut[i].clock == state->cfg.clock &&
				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
				break;
			}
		}
		ret =  af9033_wr_regs(state, 0x800001,
				coeff_lut[i].val, sizeof(coeff_lut[i].val));
	}

	/* program frequency control */
	if (c->bandwidth_hz != state->bandwidth_hz) {
447 448 449 450 451 452 453 454
		spec_inv = state->cfg.spec_inv ? -1 : 1;

		for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
			if (clock_adc_lut[i].clock == state->cfg.clock)
				break;
		}
		adc_freq = clock_adc_lut[i].adc;

455 456 457 458 459 460
		/* get used IF frequency */
		if (fe->ops.tuner_ops.get_if_frequency)
			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
		else
			if_frequency = 0;

461 462
		while (if_frequency > (adc_freq / 2))
			if_frequency -= adc_freq;
463

464 465 466 467 468 469 470 471 472 473 474 475 476
		if (if_frequency >= 0)
			spec_inv *= -1;
		else
			if_frequency *= -1;

		freq_cw = af9033_div(if_frequency, adc_freq, 23ul);

		if (spec_inv == -1)
			freq_cw *= -1;

		/* get adc multiplies */
		ret = af9033_rd_reg(state, 0x800045, &tmp);
		if (ret < 0)
477 478
			goto err;

479 480 481
		if (tmp == 1)
			freq_cw /= 2;

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
		buf[0] = (freq_cw >>  0) & 0xff;
		buf[1] = (freq_cw >>  8) & 0xff;
		buf[2] = (freq_cw >> 16) & 0x7f;
		ret = af9033_wr_regs(state, 0x800029, buf, 3);
		if (ret < 0)
			goto err;

		state->bandwidth_hz = c->bandwidth_hz;
	}

	ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800040, 0x00);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800047, 0x00);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
	if (ret < 0)
		goto err;

	if (c->frequency <= 230000000)
		tmp = 0x00; /* VHF */
	else
		tmp = 0x01; /* UHF */

	ret = af9033_wr_reg(state, 0x80004b, tmp);
	if (ret < 0)
		goto err;

	ret = af9033_wr_reg(state, 0x800000, 0x00);
	if (ret < 0)
		goto err;

	return 0;

err:
	pr_debug("%s: failed=%d\n", __func__, ret);

	return ret;
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static int af9033_get_frontend(struct dvb_frontend *fe)
{
	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
	struct af9033_state *state = fe->demodulator_priv;
	int ret;
	u8 buf[8];

	pr_debug("%s\n", __func__);

	/* read all needed registers */
	ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
	if (ret)
		goto error;

	switch ((buf[0] >> 0) & 3) {
	case 0:
		p->transmission_mode = TRANSMISSION_MODE_2K;
		break;
	case 1:
		p->transmission_mode = TRANSMISSION_MODE_8K;
		break;
	}

	switch ((buf[1] >> 0) & 3) {
	case 0:
		p->guard_interval = GUARD_INTERVAL_1_32;
		break;
	case 1:
		p->guard_interval = GUARD_INTERVAL_1_16;
		break;
	case 2:
		p->guard_interval = GUARD_INTERVAL_1_8;
		break;
	case 3:
		p->guard_interval = GUARD_INTERVAL_1_4;
		break;
	}

	switch ((buf[2] >> 0) & 7) {
	case 0:
		p->hierarchy = HIERARCHY_NONE;
		break;
	case 1:
		p->hierarchy = HIERARCHY_1;
		break;
	case 2:
		p->hierarchy = HIERARCHY_2;
		break;
	case 3:
		p->hierarchy = HIERARCHY_4;
		break;
	}

	switch ((buf[3] >> 0) & 3) {
	case 0:
		p->modulation = QPSK;
		break;
	case 1:
		p->modulation = QAM_16;
		break;
	case 2:
		p->modulation = QAM_64;
		break;
	}

	switch ((buf[4] >> 0) & 3) {
	case 0:
		p->bandwidth_hz = 6000000;
		break;
	case 1:
		p->bandwidth_hz = 7000000;
		break;
	case 2:
		p->bandwidth_hz = 8000000;
		break;
	}

	switch ((buf[6] >> 0) & 7) {
	case 0:
		p->code_rate_HP = FEC_1_2;
		break;
	case 1:
		p->code_rate_HP = FEC_2_3;
		break;
	case 2:
		p->code_rate_HP = FEC_3_4;
		break;
	case 3:
		p->code_rate_HP = FEC_5_6;
		break;
	case 4:
		p->code_rate_HP = FEC_7_8;
		break;
	case 5:
		p->code_rate_HP = FEC_NONE;
		break;
	}

	switch ((buf[7] >> 0) & 7) {
	case 0:
		p->code_rate_LP = FEC_1_2;
		break;
	case 1:
		p->code_rate_LP = FEC_2_3;
		break;
	case 2:
		p->code_rate_LP = FEC_3_4;
		break;
	case 3:
		p->code_rate_LP = FEC_5_6;
		break;
	case 4:
		p->code_rate_LP = FEC_7_8;
		break;
	case 5:
		p->code_rate_LP = FEC_NONE;
		break;
	}

	p->inversion = INVERSION_AUTO;
	p->frequency = state->frequency;

error:
	if (ret)
		pr_debug("%s: failed:%d\n", __func__, ret);

	return ret;
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;
	u8 tmp;

	*status = 0;

	/* radio channel status, 0=no result, 1=has signal, 2=no signal */
	ret = af9033_rd_reg(state, 0x800047, &tmp);
	if (ret < 0)
		goto err;

	/* has signal */
	if (tmp == 0x01)
		*status |= FE_HAS_SIGNAL;

	if (tmp != 0x02) {
		/* TPS lock */
		ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
		if (ret < 0)
			goto err;

		if (tmp)
			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
					FE_HAS_VITERBI;

		/* full lock */
		ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
		if (ret < 0)
			goto err;

		if (tmp)
			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
					FE_HAS_VITERBI | FE_HAS_SYNC |
					FE_HAS_LOCK;
	}

	return 0;

err:
	pr_debug("%s: failed=%d\n", __func__, ret);

	return ret;
}

static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
{
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	struct af9033_state *state = fe->demodulator_priv;
	int ret, i, len;
	u8 buf[3], tmp;
	u32 snr_val;
	const struct val_snr *uninitialized_var(snr_lut);

	/* read value */
	ret = af9033_rd_regs(state, 0x80002c, buf, 3);
	if (ret < 0)
		goto err;

	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];

	/* read current modulation */
	ret = af9033_rd_reg(state, 0x80f903, &tmp);
	if (ret < 0)
		goto err;

	switch ((tmp >> 0) & 3) {
	case 0:
		len = ARRAY_SIZE(qpsk_snr_lut);
		snr_lut = qpsk_snr_lut;
		break;
	case 1:
		len = ARRAY_SIZE(qam16_snr_lut);
		snr_lut = qam16_snr_lut;
		break;
	case 2:
		len = ARRAY_SIZE(qam64_snr_lut);
		snr_lut = qam64_snr_lut;
		break;
	default:
		goto err;
	}

	for (i = 0; i < len; i++) {
		tmp = snr_lut[i].snr;

		if (snr_val < snr_lut[i].val)
			break;
	}

	*snr = tmp * 10; /* dB/10 */
749 750

	return 0;
751 752 753 754 755

err:
	pr_debug("%s: failed=%d\n", __func__, ret);

	return ret;
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
}

static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;
	u8 strength2;

	/* read signal strength of 0-100 scale */
	ret = af9033_rd_reg(state, 0x800048, &strength2);
	if (ret < 0)
		goto err;

	/* scale value to 0x0000-0xffff */
	*strength = strength2 * 0xffff / 100;

	return 0;

err:
	pr_debug("%s: failed=%d\n", __func__, ret);

	return ret;
}

static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
{
	*ber = 0;

	return 0;
}

static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
	*ucblocks = 0;

	return 0;
}

static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
	struct af9033_state *state = fe->demodulator_priv;
	int ret;

	pr_debug("%s: enable=%d\n", __func__, enable);

	ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
	if (ret < 0)
		goto err;

	return 0;

err:
	pr_debug("%s: failed=%d\n", __func__, ret);

	return ret;
}

static struct dvb_frontend_ops af9033_ops;

struct dvb_frontend *af9033_attach(const struct af9033_config *config,
		struct i2c_adapter *i2c)
{
	int ret;
	struct af9033_state *state;
	u8 buf[8];

	pr_debug("%s:\n", __func__);

	/* allocate memory for the internal state */
	state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
	if (state == NULL)
		goto err;

	/* setup the state */
	state->i2c = i2c;
	memcpy(&state->cfg, config, sizeof(struct af9033_config));

833 834 835 836 837 838 839
	if (state->cfg.clock != 12000000) {
		printk(KERN_INFO "af9033: unsupported clock=%d, only " \
				"12000000 Hz is supported currently\n",
				state->cfg.clock);
		goto err;
	}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	/* firmware version */
	ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
	if (ret < 0)
		goto err;

	ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
	if (ret < 0)
		goto err;

	printk(KERN_INFO "af9033: firmware version: LINK=%d.%d.%d.%d " \
			"OFDM=%d.%d.%d.%d\n", buf[0], buf[1], buf[2], buf[3],
			buf[4], buf[5], buf[6], buf[7]);

	/* configure internal TS mode */
	switch (state->cfg.ts_mode) {
	case AF9033_TS_MODE_PARALLEL:
		state->ts_mode_parallel = true;
		break;
	case AF9033_TS_MODE_SERIAL:
		state->ts_mode_serial = true;
		break;
	case AF9033_TS_MODE_USB:
		/* usb mode for AF9035 */
	default:
		break;
	}

	/* create dvb_frontend */
	memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
	state->fe.demodulator_priv = state;

	return &state->fe;

err:
	kfree(state);
	return NULL;
}
EXPORT_SYMBOL(af9033_attach);

static struct dvb_frontend_ops af9033_ops = {
	.delsys = { SYS_DVBT },
	.info = {
		.name = "Afatech AF9033 (DVB-T)",
		.frequency_min = 174000000,
		.frequency_max = 862000000,
		.frequency_stepsize = 250000,
		.frequency_tolerance = 0,
		.caps =	FE_CAN_FEC_1_2 |
			FE_CAN_FEC_2_3 |
			FE_CAN_FEC_3_4 |
			FE_CAN_FEC_5_6 |
			FE_CAN_FEC_7_8 |
			FE_CAN_FEC_AUTO |
			FE_CAN_QPSK |
			FE_CAN_QAM_16 |
			FE_CAN_QAM_64 |
			FE_CAN_QAM_AUTO |
			FE_CAN_TRANSMISSION_MODE_AUTO |
			FE_CAN_GUARD_INTERVAL_AUTO |
			FE_CAN_HIERARCHY_AUTO |
			FE_CAN_RECOVER |
			FE_CAN_MUTE_TS
	},

	.release = af9033_release,

	.init = af9033_init,
	.sleep = af9033_sleep,

	.get_tune_settings = af9033_get_tune_settings,
	.set_frontend = af9033_set_frontend,
911
	.get_frontend = af9033_get_frontend,
912 913 914 915 916 917 918 919 920 921 922 923 924

	.read_status = af9033_read_status,
	.read_snr = af9033_read_snr,
	.read_signal_strength = af9033_read_signal_strength,
	.read_ber = af9033_read_ber,
	.read_ucblocks = af9033_read_ucblocks,

	.i2c_gate_ctrl = af9033_i2c_gate_ctrl,
};

MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
MODULE_LICENSE("GPL");