pid_namespace.c 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Pid namespaces
 *
 * Authors:
 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 *     Many thanks to Oleg Nesterov for comments and help
 *
 */

#include <linux/pid.h>
#include <linux/pid_namespace.h>
13
#include <linux/user_namespace.h>
14 15
#include <linux/syscalls.h>
#include <linux/err.h>
16
#include <linux/acct.h>
17
#include <linux/slab.h>
18
#include <linux/proc_fs.h>
19
#include <linux/reboot.h>
E
Eric W. Biederman 已提交
20
#include <linux/export.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

#define BITS_PER_PAGE		(PAGE_SIZE*8)

struct pid_cache {
	int nr_ids;
	char name[16];
	struct kmem_cache *cachep;
	struct list_head list;
};

static LIST_HEAD(pid_caches_lh);
static DEFINE_MUTEX(pid_caches_mutex);
static struct kmem_cache *pid_ns_cachep;

/*
 * creates the kmem cache to allocate pids from.
 * @nr_ids: the number of numerical ids this pid will have to carry
 */

static struct kmem_cache *create_pid_cachep(int nr_ids)
{
	struct pid_cache *pcache;
	struct kmem_cache *cachep;

	mutex_lock(&pid_caches_mutex);
	list_for_each_entry(pcache, &pid_caches_lh, list)
		if (pcache->nr_ids == nr_ids)
			goto out;

	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
	if (pcache == NULL)
		goto err_alloc;

	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
	cachep = kmem_cache_create(pcache->name,
			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
			0, SLAB_HWCACHE_ALIGN, NULL);
	if (cachep == NULL)
		goto err_cachep;

	pcache->nr_ids = nr_ids;
	pcache->cachep = cachep;
	list_add(&pcache->list, &pid_caches_lh);
out:
	mutex_unlock(&pid_caches_mutex);
	return pcache->cachep;

err_cachep:
	kfree(pcache);
err_alloc:
	mutex_unlock(&pid_caches_mutex);
	return NULL;
}

75 76 77 78 79 80
static void proc_cleanup_work(struct work_struct *work)
{
	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
	pid_ns_release_proc(ns);
}

81 82 83
/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
#define MAX_PID_NS_LEVEL 32

84 85
static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
	struct pid_namespace *parent_pid_ns)
86 87
{
	struct pid_namespace *ns;
88
	unsigned int level = parent_pid_ns->level + 1;
89 90 91 92 93 94 95
	int i;
	int err;

	if (level > MAX_PID_NS_LEVEL) {
		err = -EINVAL;
		goto out;
	}
96

97
	err = -ENOMEM;
98
	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
99 100 101 102 103 104 105 106 107 108 109 110 111
	if (ns == NULL)
		goto out;

	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (!ns->pidmap[0].page)
		goto out_free;

	ns->pid_cachep = create_pid_cachep(level + 1);
	if (ns->pid_cachep == NULL)
		goto out_free_map;

	kref_init(&ns->kref);
	ns->level = level;
112
	ns->parent = get_pid_ns(parent_pid_ns);
113
	ns->user_ns = get_user_ns(user_ns);
114
	INIT_WORK(&ns->proc_work, proc_cleanup_work);
115 116 117 118

	set_bit(0, ns->pidmap[0].page);
	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);

119
	for (i = 1; i < PIDMAP_ENTRIES; i++)
120 121 122 123 124 125 126 127 128
		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);

	return ns;

out_free_map:
	kfree(ns->pidmap[0].page);
out_free:
	kmem_cache_free(pid_ns_cachep, ns);
out:
129
	return ERR_PTR(err);
130 131 132 133 134 135 136 137
}

static void destroy_pid_namespace(struct pid_namespace *ns)
{
	int i;

	for (i = 0; i < PIDMAP_ENTRIES; i++)
		kfree(ns->pidmap[i].page);
138
	put_user_ns(ns->user_ns);
139 140 141
	kmem_cache_free(pid_ns_cachep, ns);
}

142 143
struct pid_namespace *copy_pid_ns(unsigned long flags,
	struct user_namespace *user_ns, struct pid_namespace *old_ns)
144 145
{
	if (!(flags & CLONE_NEWPID))
A
Alexey Dobriyan 已提交
146
		return get_pid_ns(old_ns);
147
	if (flags & (CLONE_THREAD|CLONE_PARENT))
A
Alexey Dobriyan 已提交
148
		return ERR_PTR(-EINVAL);
149
	return create_pid_namespace(user_ns, old_ns);
150 151
}

152
static void free_pid_ns(struct kref *kref)
153
{
154
	struct pid_namespace *ns;
155 156 157

	ns = container_of(kref, struct pid_namespace, kref);
	destroy_pid_namespace(ns);
158
}
159

160 161 162 163 164 165 166 167 168 169
void put_pid_ns(struct pid_namespace *ns)
{
	struct pid_namespace *parent;

	while (ns != &init_pid_ns) {
		parent = ns->parent;
		if (!kref_put(&ns->kref, free_pid_ns))
			break;
		ns = parent;
	}
170
}
171
EXPORT_SYMBOL_GPL(put_pid_ns);
172 173 174 175 176

void zap_pid_ns_processes(struct pid_namespace *pid_ns)
{
	int nr;
	int rc;
177 178 179 180 181 182
	struct task_struct *task, *me = current;

	/* Ignore SIGCHLD causing any terminated children to autoreap */
	spin_lock_irq(&me->sighand->siglock);
	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
	spin_unlock_irq(&me->sighand->siglock);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

	/*
	 * The last thread in the cgroup-init thread group is terminating.
	 * Find remaining pid_ts in the namespace, signal and wait for them
	 * to exit.
	 *
	 * Note:  This signals each threads in the namespace - even those that
	 * 	  belong to the same thread group, To avoid this, we would have
	 * 	  to walk the entire tasklist looking a processes in this
	 * 	  namespace, but that could be unnecessarily expensive if the
	 * 	  pid namespace has just a few processes. Or we need to
	 * 	  maintain a tasklist for each pid namespace.
	 *
	 */
	read_lock(&tasklist_lock);
	nr = next_pidmap(pid_ns, 1);
	while (nr > 0) {
200 201 202
		rcu_read_lock();

		task = pid_task(find_vpid(nr), PIDTYPE_PID);
203 204
		if (task && !__fatal_signal_pending(task))
			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
205 206 207

		rcu_read_unlock();

208 209 210 211
		nr = next_pidmap(pid_ns, nr);
	}
	read_unlock(&tasklist_lock);

212
	/* Firstly reap the EXIT_ZOMBIE children we may have. */
213 214 215 216 217
	do {
		clear_thread_flag(TIF_SIGPENDING);
		rc = sys_wait4(-1, NULL, __WALL, NULL);
	} while (rc != -ECHILD);

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	/*
	 * sys_wait4() above can't reap the TASK_DEAD children.
	 * Make sure they all go away, see __unhash_process().
	 */
	for (;;) {
		bool need_wait = false;

		read_lock(&tasklist_lock);
		if (!list_empty(&current->children)) {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			need_wait = true;
		}
		read_unlock(&tasklist_lock);

		if (!need_wait)
			break;
		schedule();
	}

237 238 239
	if (pid_ns->reboot)
		current->signal->group_exit_code = pid_ns->reboot;

240
	acct_exit_ns(pid_ns);
241 242 243
	return;
}

244
#ifdef CONFIG_CHECKPOINT_RESTORE
245 246 247
static int pid_ns_ctl_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp, loff_t *ppos)
{
248
	struct pid_namespace *pid_ns = task_active_pid_ns(current);
249 250
	struct ctl_table tmp = *table;

251
	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
252 253 254 255 256 257 258 259
		return -EPERM;

	/*
	 * Writing directly to ns' last_pid field is OK, since this field
	 * is volatile in a living namespace anyway and a code writing to
	 * it should synchronize its usage with external means.
	 */

260
	tmp.data = &pid_ns->last_pid;
261
	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
262 263
}

264 265
extern int pid_max;
static int zero = 0;
266 267 268 269 270 271
static struct ctl_table pid_ns_ctl_table[] = {
	{
		.procname = "ns_last_pid",
		.maxlen = sizeof(int),
		.mode = 0666, /* permissions are checked in the handler */
		.proc_handler = pid_ns_ctl_handler,
272 273
		.extra1 = &zero,
		.extra2 = &pid_max,
274 275 276 277
	},
	{ }
};
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
278
#endif	/* CONFIG_CHECKPOINT_RESTORE */
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
{
	if (pid_ns == &init_pid_ns)
		return 0;

	switch (cmd) {
	case LINUX_REBOOT_CMD_RESTART2:
	case LINUX_REBOOT_CMD_RESTART:
		pid_ns->reboot = SIGHUP;
		break;

	case LINUX_REBOOT_CMD_POWER_OFF:
	case LINUX_REBOOT_CMD_HALT:
		pid_ns->reboot = SIGINT;
		break;
	default:
		return -EINVAL;
	}

	read_lock(&tasklist_lock);
	force_sig(SIGKILL, pid_ns->child_reaper);
	read_unlock(&tasklist_lock);

	do_exit(0);

	/* Not reached */
	return 0;
}

309 310 311
static __init int pid_namespaces_init(void)
{
	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
312 313

#ifdef CONFIG_CHECKPOINT_RESTORE
314
	register_sysctl_paths(kern_path, pid_ns_ctl_table);
315
#endif
316 317 318 319
	return 0;
}

__initcall(pid_namespaces_init);