readahead.c 13.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * mm/readahead.c - address_space-level file readahead.
 *
 * Copyright (C) 2002, Linus Torvalds
 *
 * 09Apr2002	akpm@zip.com.au
 *		Initial version.
 */

#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
16
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
17
#include <linux/pagevec.h>
J
Jens Axboe 已提交
18
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
19 20 21 22 23 24 25

void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
{
}
EXPORT_SYMBOL(default_unplug_io_fn);

struct backing_dev_info default_backing_dev_info = {
26
	.ra_pages	= VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40
	.state		= 0,
	.capabilities	= BDI_CAP_MAP_COPY,
	.unplug_io_fn	= default_unplug_io_fn,
};
EXPORT_SYMBOL_GPL(default_backing_dev_info);

/*
 * Initialise a struct file's readahead state.  Assumes that the caller has
 * memset *ra to zero.
 */
void
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
{
	ra->ra_pages = mapping->backing_dev_info->ra_pages;
41
	ra->prev_pos = -1;
L
Linus Torvalds 已提交
42
}
43
EXPORT_SYMBOL_GPL(file_ra_state_init);
L
Linus Torvalds 已提交
44 45 46 47

#define list_to_page(head) (list_entry((head)->prev, struct page, lru))

/**
48
 * read_cache_pages - populate an address space with some pages & start reads against them
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * @mapping: the address_space
 * @pages: The address of a list_head which contains the target pages.  These
 *   pages have their ->index populated and are otherwise uninitialised.
 * @filler: callback routine for filling a single page.
 * @data: private data for the callback routine.
 *
 * Hides the details of the LRU cache etc from the filesystems.
 */
int read_cache_pages(struct address_space *mapping, struct list_head *pages,
			int (*filler)(void *, struct page *), void *data)
{
	struct page *page;
	int ret = 0;

	while (!list_empty(pages)) {
		page = list_to_page(pages);
		list_del(&page->lru);
N
Nick Piggin 已提交
66 67
		if (add_to_page_cache_lru(page, mapping,
					page->index, GFP_KERNEL)) {
L
Linus Torvalds 已提交
68 69 70
			page_cache_release(page);
			continue;
		}
N
Nick Piggin 已提交
71 72
		page_cache_release(page);

L
Linus Torvalds 已提交
73
		ret = filler(data, page);
N
Nick Piggin 已提交
74
		if (unlikely(ret)) {
75
			put_pages_list(pages);
L
Linus Torvalds 已提交
76 77
			break;
		}
78
		task_io_account_read(PAGE_CACHE_SIZE);
L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88
	}
	return ret;
}

EXPORT_SYMBOL(read_cache_pages);

static int read_pages(struct address_space *mapping, struct file *filp,
		struct list_head *pages, unsigned nr_pages)
{
	unsigned page_idx;
89
	int ret;
L
Linus Torvalds 已提交
90 91 92

	if (mapping->a_ops->readpages) {
		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
O
OGAWA Hirofumi 已提交
93 94
		/* Clean up the remaining pages */
		put_pages_list(pages);
L
Linus Torvalds 已提交
95 96 97 98 99 100
		goto out;
	}

	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
		struct page *page = list_to_page(pages);
		list_del(&page->lru);
N
Nick Piggin 已提交
101
		if (!add_to_page_cache_lru(page, mapping,
L
Linus Torvalds 已提交
102
					page->index, GFP_KERNEL)) {
103
			mapping->a_ops->readpage(filp, page);
N
Nick Piggin 已提交
104 105
		}
		page_cache_release(page);
L
Linus Torvalds 已提交
106
	}
107
	ret = 0;
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
out:
	return ret;
}

/*
 * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
 * the pages first, then submits them all for I/O. This avoids the very bad
 * behaviour which would occur if page allocations are causing VM writeback.
 * We really don't want to intermingle reads and writes like that.
 *
 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 *
 * do_page_cache_readahead() returns -1 if it encountered request queue
 * congestion.
 */
static int
__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
125 126
			pgoff_t offset, unsigned long nr_to_read,
			unsigned long lookahead_size)
L
Linus Torvalds 已提交
127 128 129 130 131 132 133 134 135 136 137 138
{
	struct inode *inode = mapping->host;
	struct page *page;
	unsigned long end_index;	/* The last page we want to read */
	LIST_HEAD(page_pool);
	int page_idx;
	int ret = 0;
	loff_t isize = i_size_read(inode);

	if (isize == 0)
		goto out;

139
	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
L
Linus Torvalds 已提交
140 141 142 143 144

	/*
	 * Preallocate as many pages as we will need.
	 */
	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
A
Andrew Morton 已提交
145
		pgoff_t page_offset = offset + page_idx;
146

L
Linus Torvalds 已提交
147 148 149
		if (page_offset > end_index)
			break;

N
Nick Piggin 已提交
150
		rcu_read_lock();
L
Linus Torvalds 已提交
151
		page = radix_tree_lookup(&mapping->page_tree, page_offset);
N
Nick Piggin 已提交
152
		rcu_read_unlock();
L
Linus Torvalds 已提交
153 154 155 156 157 158 159 160
		if (page)
			continue;

		page = page_cache_alloc_cold(mapping);
		if (!page)
			break;
		page->index = page_offset;
		list_add(&page->lru, &page_pool);
161 162
		if (page_idx == nr_to_read - lookahead_size)
			SetPageReadahead(page);
L
Linus Torvalds 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
		ret++;
	}

	/*
	 * Now start the IO.  We ignore I/O errors - if the page is not
	 * uptodate then the caller will launch readpage again, and
	 * will then handle the error.
	 */
	if (ret)
		read_pages(mapping, filp, &page_pool, ret);
	BUG_ON(!list_empty(&page_pool));
out:
	return ret;
}

/*
 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 * memory at once.
 */
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
A
Andrew Morton 已提交
183
		pgoff_t offset, unsigned long nr_to_read)
L
Linus Torvalds 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197
{
	int ret = 0;

	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
		return -EINVAL;

	while (nr_to_read) {
		int err;

		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;

		if (this_chunk > nr_to_read)
			this_chunk = nr_to_read;
		err = __do_page_cache_readahead(mapping, filp,
198
						offset, this_chunk, 0);
L
Linus Torvalds 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		if (err < 0) {
			ret = err;
			break;
		}
		ret += err;
		offset += this_chunk;
		nr_to_read -= this_chunk;
	}
	return ret;
}

/*
 * This version skips the IO if the queue is read-congested, and will tell the
 * block layer to abandon the readahead if request allocation would block.
 *
 * force_page_cache_readahead() will ignore queue congestion and will block on
 * request queues.
 */
int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
A
Andrew Morton 已提交
218
			pgoff_t offset, unsigned long nr_to_read)
L
Linus Torvalds 已提交
219 220 221 222
{
	if (bdi_read_congested(mapping->backing_dev_info))
		return -1;

223
	return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
L
Linus Torvalds 已提交
224 225 226 227 228 229 230 231
}

/*
 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
 * sensible upper limit.
 */
unsigned long max_sane_readahead(unsigned long nr)
{
232 233
	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
L
Linus Torvalds 已提交
234
}
235

P
Peter Zijlstra 已提交
236 237 238 239 240 241
static int __init readahead_init(void)
{
	return bdi_init(&default_backing_dev_info);
}
subsys_initcall(readahead_init);

242 243 244
/*
 * Submit IO for the read-ahead request in file_ra_state.
 */
245
static unsigned long ra_submit(struct file_ra_state *ra,
246 247 248 249 250
		       struct address_space *mapping, struct file *filp)
{
	int actual;

	actual = __do_page_cache_readahead(mapping, filp,
251
					ra->start, ra->size, ra->async_size);
252 253 254

	return actual;
}
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
/*
 * Set the initial window size, round to next power of 2 and square
 * for small size, x 4 for medium, and x 2 for large
 * for 128k (32 page) max ra
 * 1-8 page = 32k initial, > 8 page = 128k initial
 */
static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
{
	unsigned long newsize = roundup_pow_of_two(size);

	if (newsize <= max / 32)
		newsize = newsize * 4;
	else if (newsize <= max / 4)
		newsize = newsize * 2;
	else
		newsize = max;

	return newsize;
}

276 277 278 279
/*
 *  Get the previous window size, ramp it up, and
 *  return it as the new window size.
 */
280
static unsigned long get_next_ra_size(struct file_ra_state *ra,
281 282
						unsigned long max)
{
283
	unsigned long cur = ra->size;
284 285 286
	unsigned long newsize;

	if (cur < max / 16)
287
		newsize = 4 * cur;
288
	else
289
		newsize = 2 * cur;
290 291 292 293 294 295 296 297 298 299

	return min(newsize, max);
}

/*
 * On-demand readahead design.
 *
 * The fields in struct file_ra_state represent the most-recently-executed
 * readahead attempt:
 *
300 301 302 303
 *                        |<----- async_size ---------|
 *     |------------------- size -------------------->|
 *     |==================#===========================|
 *     ^start             ^page marked with PG_readahead
304 305 306 307
 *
 * To overlap application thinking time and disk I/O time, we do
 * `readahead pipelining': Do not wait until the application consumed all
 * readahead pages and stalled on the missing page at readahead_index;
308 309 310
 * Instead, submit an asynchronous readahead I/O as soon as there are
 * only async_size pages left in the readahead window. Normally async_size
 * will be equal to size, for maximum pipelining.
311 312 313
 *
 * In interleaved sequential reads, concurrent streams on the same fd can
 * be invalidating each other's readahead state. So we flag the new readahead
314
 * page at (start+size-async_size) with PG_readahead, and use it as readahead
315 316 317
 * indicator. The flag won't be set on already cached pages, to avoid the
 * readahead-for-nothing fuss, saving pointless page cache lookups.
 *
318
 * prev_pos tracks the last visited byte in the _previous_ read request.
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
 * It should be maintained by the caller, and will be used for detecting
 * small random reads. Note that the readahead algorithm checks loosely
 * for sequential patterns. Hence interleaved reads might be served as
 * sequential ones.
 *
 * There is a special-case: if the first page which the application tries to
 * read happens to be the first page of the file, it is assumed that a linear
 * read is about to happen and the window is immediately set to the initial size
 * based on I/O request size and the max_readahead.
 *
 * The code ramps up the readahead size aggressively at first, but slow down as
 * it approaches max_readhead.
 */

/*
 * A minimal readahead algorithm for trivial sequential/random reads.
 */
static unsigned long
ondemand_readahead(struct address_space *mapping,
		   struct file_ra_state *ra, struct file *filp,
339
		   bool hit_readahead_marker, pgoff_t offset,
340 341
		   unsigned long req_size)
{
342 343 344
	int	max = ra->ra_pages;	/* max readahead pages */
	pgoff_t prev_offset;
	int	sequential;
345 346

	/*
347
	 * It's the expected callback offset, assume sequential access.
348 349
	 * Ramp up sizes, and push forward the readahead window.
	 */
350 351 352 353 354 355
	if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
			offset == (ra->start + ra->size))) {
		ra->start += ra->size;
		ra->size = get_next_ra_size(ra, max);
		ra->async_size = ra->size;
		goto readit;
356 357
	}

358 359 360
	prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
	sequential = offset - prev_offset <= 1UL || req_size > max;

361 362 363 364
	/*
	 * Standalone, small read.
	 * Read as is, and do not pollute the readahead state.
	 */
365
	if (!hit_readahead_marker && !sequential) {
366 367 368 369
		return __do_page_cache_readahead(mapping, filp,
						offset, req_size, 0);
	}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	/*
	 * Hit a marked page without valid readahead state.
	 * E.g. interleaved reads.
	 * Query the pagecache for async_size, which normally equals to
	 * readahead size. Ramp it up and use it as the new readahead size.
	 */
	if (hit_readahead_marker) {
		pgoff_t start;

		read_lock_irq(&mapping->tree_lock);
		start = radix_tree_next_hole(&mapping->page_tree, offset, max+1);
		read_unlock_irq(&mapping->tree_lock);

		if (!start || start - offset > max)
			return 0;

		ra->start = start;
		ra->size = start - offset;	/* old async_size */
		ra->size = get_next_ra_size(ra, max);
		ra->async_size = ra->size;
		goto readit;
	}

393 394 395 396 397 398 399
	/*
	 * It may be one of
	 * 	- first read on start of file
	 * 	- sequential cache miss
	 * 	- oversize random read
	 * Start readahead for it.
	 */
400 401 402
	ra->start = offset;
	ra->size = get_init_ra_size(req_size, max);
	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
403

404
readit:
405 406 407 408
	return ra_submit(ra, mapping, filp);
}

/**
409
 * page_cache_sync_readahead - generic file readahead
410 411 412
 * @mapping: address_space which holds the pagecache and I/O vectors
 * @ra: file_ra_state which holds the readahead state
 * @filp: passed on to ->readpage() and ->readpages()
413
 * @offset: start offset into @mapping, in pagecache page-sized units
414
 * @req_size: hint: total size of the read which the caller is performing in
415
 *            pagecache pages
416
 *
417 418 419 420
 * page_cache_sync_readahead() should be called when a cache miss happened:
 * it will submit the read.  The readahead logic may decide to piggyback more
 * pages onto the read request if access patterns suggest it will improve
 * performance.
421
 */
422 423 424
void page_cache_sync_readahead(struct address_space *mapping,
			       struct file_ra_state *ra, struct file *filp,
			       pgoff_t offset, unsigned long req_size)
425 426 427
{
	/* no read-ahead */
	if (!ra->ra_pages)
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
		return;

	/* do read-ahead */
	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
}
EXPORT_SYMBOL_GPL(page_cache_sync_readahead);

/**
 * page_cache_async_readahead - file readahead for marked pages
 * @mapping: address_space which holds the pagecache and I/O vectors
 * @ra: file_ra_state which holds the readahead state
 * @filp: passed on to ->readpage() and ->readpages()
 * @page: the page at @offset which has the PG_readahead flag set
 * @offset: start offset into @mapping, in pagecache page-sized units
 * @req_size: hint: total size of the read which the caller is performing in
 *            pagecache pages
 *
 * page_cache_async_ondemand() should be called when a page is used which
 * has the PG_readahead flag: this is a marker to suggest that the application
 * has used up enough of the readahead window that we should start pulling in
 * more pages. */
void
page_cache_async_readahead(struct address_space *mapping,
			   struct file_ra_state *ra, struct file *filp,
			   struct page *page, pgoff_t offset,
			   unsigned long req_size)
{
	/* no read-ahead */
	if (!ra->ra_pages)
		return;

	/*
	 * Same bit is used for PG_readahead and PG_reclaim.
	 */
	if (PageWriteback(page))
		return;

	ClearPageReadahead(page);

	/*
	 * Defer asynchronous read-ahead on IO congestion.
	 */
	if (bdi_read_congested(mapping->backing_dev_info))
		return;
472 473

	/* do read-ahead */
474
	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
475
}
476
EXPORT_SYMBOL_GPL(page_cache_async_readahead);