delayed-inode.c 51.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2011 Fujitsu.  All rights reserved.
 * Written by Miao Xie <miaox@cn.fujitsu.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/slab.h>
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
24
#include "ctree.h"
25

26 27 28
#define BTRFS_DELAYED_WRITEBACK		512
#define BTRFS_DELAYED_BACKGROUND	128
#define BTRFS_DELAYED_BATCH		16
29 30 31 32 33

static struct kmem_cache *delayed_node_cache;

int __init btrfs_delayed_inode_init(void)
{
D
David Sterba 已提交
34
	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 36 37 38 39 40 41 42 43 44 45
					sizeof(struct btrfs_delayed_node),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!delayed_node_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_delayed_inode_exit(void)
{
46
	kmem_cache_destroy(delayed_node_cache);
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
}

static inline void btrfs_init_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				struct btrfs_root *root, u64 inode_id)
{
	delayed_node->root = root;
	delayed_node->inode_id = inode_id;
	atomic_set(&delayed_node->refs, 0);
	delayed_node->ins_root = RB_ROOT;
	delayed_node->del_root = RB_ROOT;
	mutex_init(&delayed_node->mutex);
	INIT_LIST_HEAD(&delayed_node->n_list);
	INIT_LIST_HEAD(&delayed_node->p_list);
}

static inline int btrfs_is_continuous_delayed_item(
					struct btrfs_delayed_item *item1,
					struct btrfs_delayed_item *item2)
{
	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
	    item1->key.objectid == item2->key.objectid &&
	    item1->key.type == item2->key.type &&
	    item1->key.offset + 1 == item2->key.offset)
		return 1;
	return 0;
}

static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
							struct btrfs_root *root)
{
	return root->fs_info->delayed_root;
}

81
static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
82 83 84
{
	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
	struct btrfs_root *root = btrfs_inode->root;
85
	u64 ino = btrfs_ino(inode);
86
	struct btrfs_delayed_node *node;
87 88 89

	node = ACCESS_ONCE(btrfs_inode->delayed_node);
	if (node) {
90
		atomic_inc(&node->refs);
91 92 93 94
		return node;
	}

	spin_lock(&root->inode_lock);
95
	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
96 97
	if (node) {
		if (btrfs_inode->delayed_node) {
98 99
			atomic_inc(&node->refs);	/* can be accessed */
			BUG_ON(btrfs_inode->delayed_node != node);
100
			spin_unlock(&root->inode_lock);
101
			return node;
102 103
		}
		btrfs_inode->delayed_node = node;
104 105
		/* can be accessed and cached in the inode */
		atomic_add(2, &node->refs);
106 107 108 109 110
		spin_unlock(&root->inode_lock);
		return node;
	}
	spin_unlock(&root->inode_lock);

111 112 113
	return NULL;
}

114
/* Will return either the node or PTR_ERR(-ENOMEM) */
115 116 117 118 119 120 121 122 123 124 125 126 127 128
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
							struct inode *inode)
{
	struct btrfs_delayed_node *node;
	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
	struct btrfs_root *root = btrfs_inode->root;
	u64 ino = btrfs_ino(inode);
	int ret;

again:
	node = btrfs_get_delayed_node(inode);
	if (node)
		return node;

129
	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 131
	if (!node)
		return ERR_PTR(-ENOMEM);
132
	btrfs_init_delayed_node(node, root, ino);
133

134 135
	/* cached in the btrfs inode and can be accessed */
	atomic_add(2, &node->refs);
136 137 138 139 140 141 142 143

	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
	if (ret) {
		kmem_cache_free(delayed_node_cache, node);
		return ERR_PTR(ret);
	}

	spin_lock(&root->inode_lock);
144
	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 146
	if (ret == -EEXIST) {
		spin_unlock(&root->inode_lock);
147
		kmem_cache_free(delayed_node_cache, node);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
		radix_tree_preload_end();
		goto again;
	}
	btrfs_inode->delayed_node = node;
	spin_unlock(&root->inode_lock);
	radix_tree_preload_end();

	return node;
}

/*
 * Call it when holding delayed_node->mutex
 *
 * If mod = 1, add this node into the prepared list.
 */
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
				     struct btrfs_delayed_node *node,
				     int mod)
{
	spin_lock(&root->lock);
168
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 170 171 172 173 174 175 176 177
		if (!list_empty(&node->p_list))
			list_move_tail(&node->p_list, &root->prepare_list);
		else if (mod)
			list_add_tail(&node->p_list, &root->prepare_list);
	} else {
		list_add_tail(&node->n_list, &root->node_list);
		list_add_tail(&node->p_list, &root->prepare_list);
		atomic_inc(&node->refs);	/* inserted into list */
		root->nodes++;
178
		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 180 181 182 183 184 185 186 187
	}
	spin_unlock(&root->lock);
}

/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
				       struct btrfs_delayed_node *node)
{
	spin_lock(&root->lock);
188
	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 190 191 192 193
		root->nodes--;
		atomic_dec(&node->refs);	/* not in the list */
		list_del_init(&node->n_list);
		if (!list_empty(&node->p_list))
			list_del_init(&node->p_list);
194
		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 196 197 198
	}
	spin_unlock(&root->lock);
}

199
static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
			struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->node_list))
		goto out;

	p = delayed_root->node_list.next;
	node = list_entry(p, struct btrfs_delayed_node, n_list);
	atomic_inc(&node->refs);
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

218
static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 220 221 222 223 224 225 226
						struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_root *delayed_root;
	struct list_head *p;
	struct btrfs_delayed_node *next = NULL;

	delayed_root = node->root->fs_info->delayed_root;
	spin_lock(&delayed_root->lock);
227 228
	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
		/* not in the list */
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
		if (list_empty(&delayed_root->node_list))
			goto out;
		p = delayed_root->node_list.next;
	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
		goto out;
	else
		p = node->n_list.next;

	next = list_entry(p, struct btrfs_delayed_node, n_list);
	atomic_inc(&next->refs);
out:
	spin_unlock(&delayed_root->lock);

	return next;
}

static void __btrfs_release_delayed_node(
				struct btrfs_delayed_node *delayed_node,
				int mod)
{
	struct btrfs_delayed_root *delayed_root;

	if (!delayed_node)
		return;

	delayed_root = delayed_node->root->fs_info->delayed_root;

	mutex_lock(&delayed_node->mutex);
	if (delayed_node->count)
		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
	else
		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
	mutex_unlock(&delayed_node->mutex);

	if (atomic_dec_and_test(&delayed_node->refs)) {
264
		bool free = false;
265 266 267 268 269
		struct btrfs_root *root = delayed_node->root;
		spin_lock(&root->inode_lock);
		if (atomic_read(&delayed_node->refs) == 0) {
			radix_tree_delete(&root->delayed_nodes_tree,
					  delayed_node->inode_id);
270
			free = true;
271 272
		}
		spin_unlock(&root->inode_lock);
273 274
		if (free)
			kmem_cache_free(delayed_node_cache, delayed_node);
275 276 277 278 279 280 281 282
	}
}

static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 0);
}

283
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
					struct btrfs_delayed_root *delayed_root)
{
	struct list_head *p;
	struct btrfs_delayed_node *node = NULL;

	spin_lock(&delayed_root->lock);
	if (list_empty(&delayed_root->prepare_list))
		goto out;

	p = delayed_root->prepare_list.next;
	list_del_init(p);
	node = list_entry(p, struct btrfs_delayed_node, p_list);
	atomic_inc(&node->refs);
out:
	spin_unlock(&delayed_root->lock);

	return node;
}

static inline void btrfs_release_prepared_delayed_node(
					struct btrfs_delayed_node *node)
{
	__btrfs_release_delayed_node(node, 1);
}

309
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
{
	struct btrfs_delayed_item *item;
	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
	if (item) {
		item->data_len = data_len;
		item->ins_or_del = 0;
		item->bytes_reserved = 0;
		item->delayed_node = NULL;
		atomic_set(&item->refs, 1);
	}
	return item;
}

/*
 * __btrfs_lookup_delayed_item - look up the delayed item by key
 * @delayed_node: pointer to the delayed node
 * @key:	  the key to look up
 * @prev:	  used to store the prev item if the right item isn't found
 * @next:	  used to store the next item if the right item isn't found
 *
 * Note: if we don't find the right item, we will return the prev item and
 * the next item.
 */
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
				struct rb_root *root,
				struct btrfs_key *key,
				struct btrfs_delayed_item **prev,
				struct btrfs_delayed_item **next)
{
	struct rb_node *node, *prev_node = NULL;
	struct btrfs_delayed_item *delayed_item = NULL;
	int ret = 0;

	node = root->rb_node;

	while (node) {
		delayed_item = rb_entry(node, struct btrfs_delayed_item,
					rb_node);
		prev_node = node;
		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
		if (ret < 0)
			node = node->rb_right;
		else if (ret > 0)
			node = node->rb_left;
		else
			return delayed_item;
	}

	if (prev) {
		if (!prev_node)
			*prev = NULL;
		else if (ret < 0)
			*prev = delayed_item;
		else if ((node = rb_prev(prev_node)) != NULL) {
			*prev = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*prev = NULL;
	}

	if (next) {
		if (!prev_node)
			*next = NULL;
		else if (ret > 0)
			*next = delayed_item;
		else if ((node = rb_next(prev_node)) != NULL) {
			*next = rb_entry(node, struct btrfs_delayed_item,
					 rb_node);
		} else
			*next = NULL;
	}
	return NULL;
}

384
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
					struct btrfs_delayed_node *delayed_node,
					struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
					   NULL, NULL);
	return item;
}

static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
				    struct btrfs_delayed_item *ins,
				    int action)
{
	struct rb_node **p, *node;
	struct rb_node *parent_node = NULL;
	struct rb_root *root;
	struct btrfs_delayed_item *item;
	int cmp;

	if (action == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_node->ins_root;
	else if (action == BTRFS_DELAYED_DELETION_ITEM)
		root = &delayed_node->del_root;
	else
		BUG();
	p = &root->rb_node;
	node = &ins->rb_node;

	while (*p) {
		parent_node = *p;
		item = rb_entry(parent_node, struct btrfs_delayed_item,
				 rb_node);

		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
		if (cmp < 0)
			p = &(*p)->rb_right;
		else if (cmp > 0)
			p = &(*p)->rb_left;
		else
			return -EEXIST;
	}

	rb_link_node(node, parent_node, p);
	rb_insert_color(node, root);
	ins->delayed_node = delayed_node;
	ins->ins_or_del = action;

	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
	    action == BTRFS_DELAYED_INSERTION_ITEM &&
	    ins->key.offset >= delayed_node->index_cnt)
			delayed_node->index_cnt = ins->key.offset + 1;

	delayed_node->count++;
	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
	return 0;
}

static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
					      struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_INSERTION_ITEM);
}

static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
					     struct btrfs_delayed_item *item)
{
	return __btrfs_add_delayed_item(node, item,
					BTRFS_DELAYED_DELETION_ITEM);
}

457 458 459
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
	int seq = atomic_inc_return(&delayed_root->items_seq);
460 461 462 463

	/*
	 * atomic_dec_return implies a barrier for waitqueue_active
	 */
464 465 466 467 468 469
	if ((atomic_dec_return(&delayed_root->items) <
	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
	    waitqueue_active(&delayed_root->wait))
		wake_up(&delayed_root->wait);
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
	struct rb_root *root;
	struct btrfs_delayed_root *delayed_root;

	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;

	BUG_ON(!delayed_root);
	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);

	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
		root = &delayed_item->delayed_node->ins_root;
	else
		root = &delayed_item->delayed_node->del_root;

	rb_erase(&delayed_item->rb_node, root);
	delayed_item->delayed_node->count--;
488 489

	finish_one_item(delayed_root);
490 491 492 493 494 495 496 497 498 499 500
}

static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
	if (item) {
		__btrfs_remove_delayed_item(item);
		if (atomic_dec_and_test(&item->refs))
			kfree(item);
	}
}

501
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
502 503 504 505 506 507 508 509 510 511 512 513
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->ins_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

514
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
515 516 517 518 519 520 521 522 523 524 525 526
					struct btrfs_delayed_node *delayed_node)
{
	struct rb_node *p;
	struct btrfs_delayed_item *item = NULL;

	p = rb_first(&delayed_node->del_root);
	if (p)
		item = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return item;
}

527
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
						struct btrfs_delayed_item *item)
{
	struct rb_node *p;
	struct btrfs_delayed_item *next = NULL;

	p = rb_next(&item->rb_node);
	if (p)
		next = rb_entry(p, struct btrfs_delayed_item, rb_node);

	return next;
}

static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
					       struct btrfs_root *root,
					       struct btrfs_delayed_item *item)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;

	if (!trans->bytes_reserved)
		return 0;

	src_rsv = trans->block_rsv;
553
	dst_rsv = &root->fs_info->delayed_block_rsv;
554 555 556

	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
J
Josef Bacik 已提交
557 558 559 560
	if (!ret) {
		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
					      item->key.objectid,
					      num_bytes, 1);
561
		item->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
562
	}
563 564 565 566 567 568 569

	return ret;
}

static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
						struct btrfs_delayed_item *item)
{
570 571
	struct btrfs_block_rsv *rsv;

572 573 574
	if (!item->bytes_reserved)
		return;

575
	rsv = &root->fs_info->delayed_block_rsv;
J
Josef Bacik 已提交
576 577 578
	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
				      item->key.objectid, item->bytes_reserved,
				      0);
579
	btrfs_block_rsv_release(root, rsv,
580 581 582 583 584 585
				item->bytes_reserved);
}

static int btrfs_delayed_inode_reserve_metadata(
					struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
586
					struct inode *inode,
587 588 589 590 591 592
					struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *src_rsv;
	struct btrfs_block_rsv *dst_rsv;
	u64 num_bytes;
	int ret;
J
Josef Bacik 已提交
593
	bool release = false;
594 595

	src_rsv = trans->block_rsv;
596
	dst_rsv = &root->fs_info->delayed_block_rsv;
597 598

	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
599 600 601 602 603 604 605 606 607 608

	/*
	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
	 * which doesn't reserve space for speed.  This is a problem since we
	 * still need to reserve space for this update, so try to reserve the
	 * space.
	 *
	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
	 * we're accounted for.
	 */
609
	if (!src_rsv || (!trans->bytes_reserved &&
610
			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
M
Miao Xie 已提交
611 612
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
613 614 615 616 617 618 619 620
		/*
		 * Since we're under a transaction reserve_metadata_bytes could
		 * try to commit the transaction which will make it return
		 * EAGAIN to make us stop the transaction we have, so return
		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
		 */
		if (ret == -EAGAIN)
			ret = -ENOSPC;
J
Josef Bacik 已提交
621
		if (!ret) {
622
			node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
623 624 625 626 627
			trace_btrfs_space_reservation(root->fs_info,
						      "delayed_inode",
						      btrfs_ino(inode),
						      num_bytes, 1);
		}
628
		return ret;
629
	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
630
		spin_lock(&BTRFS_I(inode)->lock);
631 632
		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
				       &BTRFS_I(inode)->runtime_flags)) {
633 634 635 636 637 638 639 640 641 642 643 644 645 646
			spin_unlock(&BTRFS_I(inode)->lock);
			release = true;
			goto migrate;
		}
		spin_unlock(&BTRFS_I(inode)->lock);

		/* Ok we didn't have space pre-reserved.  This shouldn't happen
		 * too often but it can happen if we do delalloc to an existing
		 * inode which gets dirtied because of the time update, and then
		 * isn't touched again until after the transaction commits and
		 * then we try to write out the data.  First try to be nice and
		 * reserve something strictly for us.  If not be a pain and try
		 * to steal from the delalloc block rsv.
		 */
M
Miao Xie 已提交
647 648
		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
					  BTRFS_RESERVE_NO_FLUSH);
649 650 651 652
		if (!ret)
			goto out;

		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
653
		if (!WARN_ON(ret))
654 655 656 657 658 659 660 661 662
			goto out;

		/*
		 * Ok this is a problem, let's just steal from the global rsv
		 * since this really shouldn't happen that often.
		 */
		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
					      dst_rsv, num_bytes);
		goto out;
663 664
	}

665
migrate:
666
	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

out:
	/*
	 * Migrate only takes a reservation, it doesn't touch the size of the
	 * block_rsv.  This is to simplify people who don't normally have things
	 * migrated from their block rsv.  If they go to release their
	 * reservation, that will decrease the size as well, so if migrate
	 * reduced size we'd end up with a negative size.  But for the
	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
	 * but we could in fact do this reserve/migrate dance several times
	 * between the time we did the original reservation and we'd clean it
	 * up.  So to take care of this, release the space for the meta
	 * reservation here.  I think it may be time for a documentation page on
	 * how block rsvs. work.
	 */
J
Josef Bacik 已提交
682 683 684
	if (!ret) {
		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
					      btrfs_ino(inode), num_bytes, 1);
685
		node->bytes_reserved = num_bytes;
J
Josef Bacik 已提交
686
	}
687

J
Josef Bacik 已提交
688 689 690
	if (release) {
		trace_btrfs_space_reservation(root->fs_info, "delalloc",
					      btrfs_ino(inode), num_bytes, 0);
691
		btrfs_block_rsv_release(root, src_rsv, num_bytes);
J
Josef Bacik 已提交
692
	}
693 694 695 696 697 698 699 700 701 702 703 704

	return ret;
}

static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
						struct btrfs_delayed_node *node)
{
	struct btrfs_block_rsv *rsv;

	if (!node->bytes_reserved)
		return;

705
	rsv = &root->fs_info->delayed_block_rsv;
J
Josef Bacik 已提交
706 707
	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
				      node->inode_id, node->bytes_reserved, 0);
708 709 710 711 712 713 714 715 716
	btrfs_block_rsv_release(root, rsv,
				node->bytes_reserved);
	node->bytes_reserved = 0;
}

/*
 * This helper will insert some continuous items into the same leaf according
 * to the free space of the leaf.
 */
717 718 719
static int btrfs_batch_insert_items(struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
{
	struct btrfs_delayed_item *curr, *next;
	int free_space;
	int total_data_size = 0, total_size = 0;
	struct extent_buffer *leaf;
	char *data_ptr;
	struct btrfs_key *keys;
	u32 *data_size;
	struct list_head head;
	int slot;
	int nitems;
	int i;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];
	free_space = btrfs_leaf_free_space(root, leaf);
	INIT_LIST_HEAD(&head);

	next = item;
741
	nitems = 0;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

	/*
	 * count the number of the continuous items that we can insert in batch
	 */
	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
	       free_space) {
		total_data_size += next->data_len;
		total_size += next->data_len + sizeof(struct btrfs_item);
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;
	}

	if (!nitems) {
		ret = 0;
		goto out;
	}

	/*
	 * we need allocate some memory space, but it might cause the task
	 * to sleep, so we set all locked nodes in the path to blocking locks
	 * first.
	 */
	btrfs_set_path_blocking(path);

774
	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
775 776 777 778 779
	if (!keys) {
		ret = -ENOMEM;
		goto out;
	}

780
	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
781 782 783 784 785 786 787 788 789 790 791 792 793 794
	if (!data_size) {
		ret = -ENOMEM;
		goto error;
	}

	/* get keys of all the delayed items */
	i = 0;
	list_for_each_entry(next, &head, tree_list) {
		keys[i] = next->key;
		data_size[i] = next->data_len;
		i++;
	}

	/* reset all the locked nodes in the patch to spinning locks. */
795
	btrfs_clear_path_blocking(path, NULL, 0);
796 797

	/* insert the keys of the items */
798
	setup_items_for_insert(root, path, keys, data_size,
799
			       total_data_size, total_size, nitems);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

	/* insert the dir index items */
	slot = path->slots[0];
	list_for_each_entry_safe(curr, next, &head, tree_list) {
		data_ptr = btrfs_item_ptr(leaf, slot, char);
		write_extent_buffer(leaf, &curr->data,
				    (unsigned long)data_ptr,
				    curr->data_len);
		slot++;

		btrfs_delayed_item_release_metadata(root, curr);

		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

error:
	kfree(data_size);
	kfree(keys);
out:
	return ret;
}

/*
 * This helper can just do simple insertion that needn't extend item for new
 * data, such as directory name index insertion, inode insertion.
 */
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path,
				     struct btrfs_delayed_item *delayed_item)
{
	struct extent_buffer *leaf;
	char *ptr;
	int ret;

	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
				      delayed_item->data_len);
	if (ret < 0 && ret != -EEXIST)
		return ret;

	leaf = path->nodes[0];

	ptr = btrfs_item_ptr(leaf, path->slots[0], char);

	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
			    delayed_item->data_len);
	btrfs_mark_buffer_dirty(leaf);

	btrfs_delayed_item_release_metadata(root, delayed_item);
	return 0;
}

/*
 * we insert an item first, then if there are some continuous items, we try
 * to insert those items into the same leaf.
 */
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_insertion_item(node);
	if (!curr)
		goto insert_end;

	ret = btrfs_insert_delayed_item(trans, root, path, curr);
	if (ret < 0) {
873
		btrfs_release_path(path);
874 875 876 877 878 879 880 881
		goto insert_end;
	}

	prev = curr;
	curr = __btrfs_next_delayed_item(prev);
	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
		/* insert the continuous items into the same leaf */
		path->slots[0]++;
882
		btrfs_batch_insert_items(root, path, curr);
883 884 885 886
	}
	btrfs_release_delayed_item(prev);
	btrfs_mark_buffer_dirty(path->nodes[0]);

887
	btrfs_release_path(path);
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	mutex_unlock(&node->mutex);
	goto do_again;

insert_end:
	mutex_unlock(&node->mutex);
	return ret;
}

static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct btrfs_delayed_item *item)
{
	struct btrfs_delayed_item *curr, *next;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct list_head head;
	int nitems, i, last_item;
	int ret = 0;

	BUG_ON(!path->nodes[0]);

	leaf = path->nodes[0];

	i = path->slots[0];
	last_item = btrfs_header_nritems(leaf) - 1;
	if (i > last_item)
		return -ENOENT;	/* FIXME: Is errno suitable? */

	next = item;
	INIT_LIST_HEAD(&head);
	btrfs_item_key_to_cpu(leaf, &key, i);
	nitems = 0;
	/*
	 * count the number of the dir index items that we can delete in batch
	 */
	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
		list_add_tail(&next->tree_list, &head);
		nitems++;

		curr = next;
		next = __btrfs_next_delayed_item(curr);
		if (!next)
			break;

		if (!btrfs_is_continuous_delayed_item(curr, next))
			break;

		i++;
		if (i > last_item)
			break;
		btrfs_item_key_to_cpu(leaf, &key, i);
	}

	if (!nitems)
		return 0;

	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
	if (ret)
		goto out;

	list_for_each_entry_safe(curr, next, &head, tree_list) {
		btrfs_delayed_item_release_metadata(root, curr);
		list_del(&curr->tree_list);
		btrfs_release_delayed_item(curr);
	}

out:
	return ret;
}

static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      struct btrfs_root *root,
				      struct btrfs_delayed_node *node)
{
	struct btrfs_delayed_item *curr, *prev;
	int ret = 0;

do_again:
	mutex_lock(&node->mutex);
	curr = __btrfs_first_delayed_deletion_item(node);
	if (!curr)
		goto delete_fail;

	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
	if (ret < 0)
		goto delete_fail;
	else if (ret > 0) {
		/*
		 * can't find the item which the node points to, so this node
		 * is invalid, just drop it.
		 */
		prev = curr;
		curr = __btrfs_next_delayed_item(prev);
		btrfs_release_delayed_item(prev);
		ret = 0;
985
		btrfs_release_path(path);
986 987
		if (curr) {
			mutex_unlock(&node->mutex);
988
			goto do_again;
989
		} else
990 991 992 993
			goto delete_fail;
	}

	btrfs_batch_delete_items(trans, root, path, curr);
994
	btrfs_release_path(path);
995 996 997 998
	mutex_unlock(&node->mutex);
	goto do_again;

delete_fail:
999
	btrfs_release_path(path);
1000 1001 1002 1003 1004 1005 1006 1007
	mutex_unlock(&node->mutex);
	return ret;
}

static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

1008 1009
	if (delayed_node &&
	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1010
		BUG_ON(!delayed_node->root);
1011
		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1012 1013 1014
		delayed_node->count--;

		delayed_root = delayed_node->root->fs_info->delayed_root;
1015
		finish_one_item(delayed_root);
1016 1017 1018
	}
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_delayed_root *delayed_root;

	ASSERT(delayed_node->root);
	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count--;

	delayed_root = delayed_node->root->fs_info->delayed_root;
	finish_one_item(delayed_root);
}

1031 1032 1033 1034
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct btrfs_delayed_node *node)
1035 1036 1037 1038
{
	struct btrfs_key key;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
1039
	int mod;
1040 1041 1042
	int ret;

	key.objectid = node->inode_id;
1043
	key.type = BTRFS_INODE_ITEM_KEY;
1044
	key.offset = 0;
1045

1046 1047 1048 1049 1050 1051
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		mod = -1;
	else
		mod = 1;

	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1052
	if (ret > 0) {
1053
		btrfs_release_path(path);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		return -ENOENT;
	} else if (ret < 0) {
		return ret;
	}

	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
			    sizeof(struct btrfs_inode_item));
	btrfs_mark_buffer_dirty(leaf);

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
		goto no_iref;

	path->slots[0]++;
	if (path->slots[0] >= btrfs_header_nritems(leaf))
		goto search;
again:
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.objectid != node->inode_id)
		goto out;

	if (key.type != BTRFS_INODE_REF_KEY &&
	    key.type != BTRFS_INODE_EXTREF_KEY)
		goto out;

	/*
	 * Delayed iref deletion is for the inode who has only one link,
	 * so there is only one iref. The case that several irefs are
	 * in the same item doesn't exist.
	 */
	btrfs_del_item(trans, root, path);
out:
	btrfs_release_delayed_iref(node);
no_iref:
	btrfs_release_path(path);
err_out:
1092 1093 1094
	btrfs_delayed_inode_release_metadata(root, node);
	btrfs_release_delayed_inode(node);

1095 1096 1097 1098 1099
	return ret;

search:
	btrfs_release_path(path);

1100
	key.type = BTRFS_INODE_EXTREF_KEY;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	key.offset = -1;
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto err_out;
	ASSERT(ret);

	ret = 0;
	leaf = path->nodes[0];
	path->slots[0]--;
	goto again;
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
					     struct btrfs_root *root,
					     struct btrfs_path *path,
					     struct btrfs_delayed_node *node)
{
	int ret;

	mutex_lock(&node->mutex);
1121
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1122 1123 1124 1125 1126 1127 1128 1129 1130
		mutex_unlock(&node->mutex);
		return 0;
	}

	ret = __btrfs_update_delayed_inode(trans, root, path, node);
	mutex_unlock(&node->mutex);
	return ret;
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				   struct btrfs_path *path,
				   struct btrfs_delayed_node *node)
{
	int ret;

	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
	if (ret)
		return ret;

	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
	return ret;
}

1150 1151 1152 1153 1154 1155
/*
 * Called when committing the transaction.
 * Returns 0 on success.
 * Returns < 0 on error and returns with an aborted transaction with any
 * outstanding delayed items cleaned up.
 */
1156 1157
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root, int nr)
1158 1159 1160 1161
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;
	struct btrfs_path *path;
1162
	struct btrfs_block_rsv *block_rsv;
1163
	int ret = 0;
1164
	bool count = (nr > 0);
1165

1166 1167 1168
	if (trans->aborted)
		return -EIO;

1169 1170 1171 1172 1173
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->leave_spinning = 1;

1174
	block_rsv = trans->block_rsv;
1175
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1176

1177 1178 1179
	delayed_root = btrfs_get_delayed_root(root);

	curr_node = btrfs_first_delayed_node(delayed_root);
1180
	while (curr_node && (!count || (count && nr--))) {
1181 1182
		ret = __btrfs_commit_inode_delayed_items(trans, path,
							 curr_node);
1183 1184
		if (ret) {
			btrfs_release_delayed_node(curr_node);
1185
			curr_node = NULL;
1186
			btrfs_abort_transaction(trans, root, ret);
1187 1188 1189 1190 1191 1192 1193 1194
			break;
		}

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}

1195 1196
	if (curr_node)
		btrfs_release_delayed_node(curr_node);
1197
	btrfs_free_path(path);
1198
	trans->block_rsv = block_rsv;
1199

1200 1201 1202
	return ret;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root)
{
	return __btrfs_run_delayed_items(trans, root, -1);
}

int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, int nr)
{
	return __btrfs_run_delayed_items(trans, root, nr);
}

1215 1216 1217 1218
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
				     struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1219 1220
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
	if (!delayed_node->count) {
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

1234
	path = btrfs_alloc_path();
1235 1236
	if (!path) {
		btrfs_release_delayed_node(delayed_node);
1237
		return -ENOMEM;
1238
	}
1239 1240 1241 1242 1243 1244 1245
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);

1246
	btrfs_release_delayed_node(delayed_node);
1247 1248 1249
	btrfs_free_path(path);
	trans->block_rsv = block_rsv;

1250 1251 1252
	return ret;
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
int btrfs_commit_inode_delayed_inode(struct inode *inode)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
	struct btrfs_path *path;
	struct btrfs_block_rsv *block_rsv;
	int ret;

	if (!delayed_node)
		return 0;

	mutex_lock(&delayed_node->mutex);
1265
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return 0;
	}
	mutex_unlock(&delayed_node->mutex);

	trans = btrfs_join_transaction(delayed_node->root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto trans_out;
	}
	path->leave_spinning = 1;

	block_rsv = trans->block_rsv;
	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;

	mutex_lock(&delayed_node->mutex);
1289
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
						   path, delayed_node);
	else
		ret = 0;
	mutex_unlock(&delayed_node->mutex);

	btrfs_free_path(path);
	trans->block_rsv = block_rsv;
trans_out:
	btrfs_end_transaction(trans, delayed_node->root);
	btrfs_btree_balance_dirty(delayed_node->root);
out:
	btrfs_release_delayed_node(delayed_node);

	return ret;
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
void btrfs_remove_delayed_node(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
	if (!delayed_node)
		return;

	BTRFS_I(inode)->delayed_node = NULL;
	btrfs_release_delayed_node(delayed_node);
}

1319 1320 1321
struct btrfs_async_delayed_work {
	struct btrfs_delayed_root *delayed_root;
	int nr;
1322
	struct btrfs_work work;
1323 1324
};

1325
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1326
{
1327 1328
	struct btrfs_async_delayed_work *async_work;
	struct btrfs_delayed_root *delayed_root;
1329 1330 1331 1332
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_delayed_node *delayed_node = NULL;
	struct btrfs_root *root;
1333
	struct btrfs_block_rsv *block_rsv;
1334
	int total_done = 0;
1335

1336 1337
	async_work = container_of(work, struct btrfs_async_delayed_work, work);
	delayed_root = async_work->delayed_root;
1338 1339 1340 1341 1342

	path = btrfs_alloc_path();
	if (!path)
		goto out;

1343 1344 1345 1346 1347 1348 1349 1350 1351
again:
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
		goto free_path;

	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
	if (!delayed_node)
		goto free_path;

	path->leave_spinning = 1;
1352 1353
	root = delayed_node->root;

C
Chris Mason 已提交
1354
	trans = btrfs_join_transaction(root);
1355
	if (IS_ERR(trans))
1356
		goto release_path;
1357

1358
	block_rsv = trans->block_rsv;
1359
	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1360

1361
	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1362

1363
	trans->block_rsv = block_rsv;
1364
	btrfs_end_transaction(trans, root);
1365
	btrfs_btree_balance_dirty_nodelay(root);
1366 1367 1368 1369 1370 1371 1372 1373 1374

release_path:
	btrfs_release_path(path);
	total_done++;

	btrfs_release_prepared_delayed_node(delayed_node);
	if (async_work->nr == 0 || total_done < async_work->nr)
		goto again;

1375 1376 1377
free_path:
	btrfs_free_path(path);
out:
1378 1379
	wake_up(&delayed_root->wait);
	kfree(async_work);
1380 1381
}

1382

1383
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1384
				     struct btrfs_fs_info *fs_info, int nr)
1385
{
1386
	struct btrfs_async_delayed_work *async_work;
1387

1388
	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1389 1390
		return 0;

1391 1392
	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
	if (!async_work)
1393 1394
		return -ENOMEM;

1395
	async_work->delayed_root = delayed_root;
1396 1397
	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
			btrfs_async_run_delayed_root, NULL, NULL);
1398
	async_work->nr = nr;
1399

1400
	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1401 1402 1403
	return 0;
}

1404 1405 1406 1407 1408 1409 1410
void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
{
	struct btrfs_delayed_root *delayed_root;
	delayed_root = btrfs_get_delayed_root(root);
	WARN_ON(btrfs_first_delayed_node(delayed_root));
}

1411
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1412 1413 1414
{
	int val = atomic_read(&delayed_root->items_seq);

1415
	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1416
		return 1;
1417 1418 1419 1420

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return 1;

1421 1422 1423
	return 0;
}

1424 1425 1426
void btrfs_balance_delayed_items(struct btrfs_root *root)
{
	struct btrfs_delayed_root *delayed_root;
1427
	struct btrfs_fs_info *fs_info = root->fs_info;
1428 1429 1430 1431 1432 1433 1434

	delayed_root = btrfs_get_delayed_root(root);

	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
		return;

	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1435
		int seq;
1436
		int ret;
1437 1438

		seq = atomic_read(&delayed_root->items_seq);
1439

1440
		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1441 1442 1443
		if (ret)
			return;

1444 1445
		wait_event_interruptible(delayed_root->wait,
					 could_end_wait(delayed_root, seq));
1446
		return;
1447 1448
	}

1449
	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1450 1451
}

1452
/* Will return 0 or -ENOMEM */
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root, const char *name,
				   int name_len, struct inode *dir,
				   struct btrfs_disk_key *disk_key, u8 type,
				   u64 index)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *delayed_item;
	struct btrfs_dir_item *dir_item;
	int ret;

	delayed_node = btrfs_get_or_create_delayed_node(dir);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
	if (!delayed_item) {
		ret = -ENOMEM;
		goto release_node;
	}

1474
	delayed_item->key.objectid = btrfs_ino(dir);
1475
	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1476 1477 1478 1479
	delayed_item->key.offset = index;

	dir_item = (struct btrfs_dir_item *)delayed_item->data;
	dir_item->location = *disk_key;
1480 1481 1482 1483
	btrfs_set_stack_dir_transid(dir_item, trans->transid);
	btrfs_set_stack_dir_data_len(dir_item, 0);
	btrfs_set_stack_dir_name_len(dir_item, name_len);
	btrfs_set_stack_dir_type(dir_item, type);
1484 1485
	memcpy((char *)(dir_item + 1), name, name_len);

J
Josef Bacik 已提交
1486 1487 1488 1489 1490 1491 1492 1493
	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible
	 */
	BUG_ON(ret);


1494 1495 1496
	mutex_lock(&delayed_node->mutex);
	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
	if (unlikely(ret)) {
1497
		btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1498
				"into the insertion tree of the delayed node"
1499
				"(root id: %llu, inode id: %llu, errno: %d)",
1500
				name_len, name, delayed_node->root->objectid,
1501
				delayed_node->inode_id, ret);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
		BUG();
	}
	mutex_unlock(&delayed_node->mutex);

release_node:
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
					       struct btrfs_delayed_node *node,
					       struct btrfs_key *key)
{
	struct btrfs_delayed_item *item;

	mutex_lock(&node->mutex);
	item = __btrfs_lookup_delayed_insertion_item(node, key);
	if (!item) {
		mutex_unlock(&node->mutex);
		return 1;
	}

	btrfs_delayed_item_release_metadata(root, item);
	btrfs_release_delayed_item(item);
	mutex_unlock(&node->mutex);
	return 0;
}

int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root, struct inode *dir,
				   u64 index)
{
	struct btrfs_delayed_node *node;
	struct btrfs_delayed_item *item;
	struct btrfs_key item_key;
	int ret;

	node = btrfs_get_or_create_delayed_node(dir);
	if (IS_ERR(node))
		return PTR_ERR(node);

1543
	item_key.objectid = btrfs_ino(dir);
1544
	item_key.type = BTRFS_DIR_INDEX_KEY;
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	item_key.offset = index;

	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
	if (!ret)
		goto end;

	item = btrfs_alloc_delayed_item(0);
	if (!item) {
		ret = -ENOMEM;
		goto end;
	}

	item->key = item_key;

	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
	/*
	 * we have reserved enough space when we start a new transaction,
	 * so reserving metadata failure is impossible.
	 */
	BUG_ON(ret);

	mutex_lock(&node->mutex);
	ret = __btrfs_add_delayed_deletion_item(node, item);
	if (unlikely(ret)) {
1569
		btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1570
				"into the deletion tree of the delayed node"
1571
				"(root id: %llu, inode id: %llu, errno: %d)",
1572
				index, node->root->objectid, node->inode_id,
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
				ret);
		BUG();
	}
	mutex_unlock(&node->mutex);
end:
	btrfs_release_delayed_node(node);
	return ret;
}

int btrfs_inode_delayed_dir_index_count(struct inode *inode)
{
1584
	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1585 1586 1587 1588 1589 1590 1591 1592 1593

	if (!delayed_node)
		return -ENOENT;

	/*
	 * Since we have held i_mutex of this directory, it is impossible that
	 * a new directory index is added into the delayed node and index_cnt
	 * is updated now. So we needn't lock the delayed node.
	 */
1594 1595
	if (!delayed_node->index_cnt) {
		btrfs_release_delayed_node(delayed_node);
1596
		return -EINVAL;
1597
	}
1598 1599

	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1600 1601
	btrfs_release_delayed_node(delayed_node);
	return 0;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
}

void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
			     struct list_head *del_list)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_delayed_item *item;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return;

	mutex_lock(&delayed_node->mutex);
	item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (item) {
		atomic_inc(&item->refs);
		list_add_tail(&item->readdir_list, ins_list);
		item = __btrfs_next_delayed_item(item);
	}

	item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (item) {
		atomic_inc(&item->refs);
		list_add_tail(&item->readdir_list, del_list);
		item = __btrfs_next_delayed_item(item);
	}
	mutex_unlock(&delayed_node->mutex);
	/*
	 * This delayed node is still cached in the btrfs inode, so refs
	 * must be > 1 now, and we needn't check it is going to be freed
	 * or not.
	 *
	 * Besides that, this function is used to read dir, we do not
	 * insert/delete delayed items in this period. So we also needn't
	 * requeue or dequeue this delayed node.
	 */
	atomic_dec(&delayed_node->refs);
}

void btrfs_put_delayed_items(struct list_head *ins_list,
			     struct list_head *del_list)
{
	struct btrfs_delayed_item *curr, *next;

	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);
		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);
	}

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		list_del(&curr->readdir_list);
		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);
	}
}

int btrfs_should_delete_dir_index(struct list_head *del_list,
				  u64 index)
{
	struct btrfs_delayed_item *curr, *next;
	int ret;

	if (list_empty(del_list))
		return 0;

	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
		if (curr->key.offset > index)
			break;

		list_del(&curr->readdir_list);
		ret = (curr->key.offset == index);

		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);

		if (ret)
			return 1;
		else
			continue;
	}
	return 0;
}

/*
 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
 *
 */
A
Al Viro 已提交
1690
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1691
				    struct list_head *ins_list, bool *emitted)
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
{
	struct btrfs_dir_item *di;
	struct btrfs_delayed_item *curr, *next;
	struct btrfs_key location;
	char *name;
	int name_len;
	int over = 0;
	unsigned char d_type;

	if (list_empty(ins_list))
		return 0;

	/*
	 * Changing the data of the delayed item is impossible. So
	 * we needn't lock them. And we have held i_mutex of the
	 * directory, nobody can delete any directory indexes now.
	 */
	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
		list_del(&curr->readdir_list);

A
Al Viro 已提交
1712
		if (curr->key.offset < ctx->pos) {
1713 1714 1715 1716 1717
			if (atomic_dec_and_test(&curr->refs))
				kfree(curr);
			continue;
		}

A
Al Viro 已提交
1718
		ctx->pos = curr->key.offset;
1719 1720 1721

		di = (struct btrfs_dir_item *)curr->data;
		name = (char *)(di + 1);
1722
		name_len = btrfs_stack_dir_name_len(di);
1723 1724 1725 1726

		d_type = btrfs_filetype_table[di->type];
		btrfs_disk_key_to_cpu(&location, &di->location);

A
Al Viro 已提交
1727
		over = !dir_emit(ctx, name, name_len,
1728 1729 1730 1731 1732 1733 1734
			       location.objectid, d_type);

		if (atomic_dec_and_test(&curr->refs))
			kfree(curr);

		if (over)
			return 1;
1735
		*emitted = true;
1736 1737 1738 1739 1740 1741 1742 1743
	}
	return 0;
}

static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
				  struct btrfs_inode_item *inode_item,
				  struct inode *inode)
{
1744 1745
	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1746 1747 1748 1749 1750 1751
	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
	btrfs_set_stack_inode_generation(inode_item,
					 BTRFS_I(inode)->generation);
1752
	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1753 1754 1755
	btrfs_set_stack_inode_transid(inode_item, trans->transid);
	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
C
Chris Mason 已提交
1756
	btrfs_set_stack_inode_block_group(inode_item, 0);
1757

1758
	btrfs_set_stack_timespec_sec(&inode_item->atime,
1759
				     inode->i_atime.tv_sec);
1760
	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1761 1762
				      inode->i_atime.tv_nsec);

1763
	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1764
				     inode->i_mtime.tv_sec);
1765
	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1766 1767
				      inode->i_mtime.tv_nsec);

1768
	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1769
				     inode->i_ctime.tv_sec);
1770
	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1771
				      inode->i_ctime.tv_nsec);
1772 1773 1774 1775 1776

	btrfs_set_stack_timespec_sec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_sec);
	btrfs_set_stack_timespec_nsec(&inode_item->otime,
				     BTRFS_I(inode)->i_otime.tv_nsec);
1777 1778
}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
	struct btrfs_delayed_node *delayed_node;
	struct btrfs_inode_item *inode_item;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return -ENOENT;

	mutex_lock(&delayed_node->mutex);
1789
	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1790 1791 1792 1793 1794 1795 1796
		mutex_unlock(&delayed_node->mutex);
		btrfs_release_delayed_node(delayed_node);
		return -ENOENT;
	}

	inode_item = &delayed_node->inode_item;

1797 1798
	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1799 1800
	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
	inode->i_mode = btrfs_stack_inode_mode(inode_item);
M
Miklos Szeredi 已提交
1801
	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1802 1803
	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1804 1805
        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);

1806
	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1807 1808 1809 1810
	inode->i_rdev = 0;
	*rdev = btrfs_stack_inode_rdev(inode_item);
	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);

1811 1812
	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1813

1814 1815
	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1816

1817 1818
	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1819

1820 1821 1822 1823 1824
	BTRFS_I(inode)->i_otime.tv_sec =
		btrfs_stack_timespec_sec(&inode_item->otime);
	BTRFS_I(inode)->i_otime.tv_nsec =
		btrfs_stack_timespec_nsec(&inode_item->otime);

1825 1826 1827 1828 1829 1830 1831 1832
	inode->i_generation = BTRFS_I(inode)->generation;
	BTRFS_I(inode)->index_cnt = (u64)-1;

	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1833 1834 1835 1836
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root, struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;
1837
	int ret = 0;
1838 1839 1840 1841 1842 1843

	delayed_node = btrfs_get_or_create_delayed_node(inode);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	mutex_lock(&delayed_node->mutex);
1844
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1845 1846 1847 1848
		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
		goto release_node;
	}

1849 1850
	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
						   delayed_node);
1851 1852
	if (ret)
		goto release_node;
1853 1854

	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1855
	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1856 1857 1858 1859 1860 1861 1862 1863
	delayed_node->count++;
	atomic_inc(&root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return ret;
}

1864 1865 1866 1867
int btrfs_delayed_delete_inode_ref(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

1868 1869 1870 1871 1872 1873 1874 1875
	/*
	 * we don't do delayed inode updates during log recovery because it
	 * leads to enospc problems.  This means we also can't do
	 * delayed inode refs
	 */
	if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
		return -EAGAIN;

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	delayed_node = btrfs_get_or_create_delayed_node(inode);
	if (IS_ERR(delayed_node))
		return PTR_ERR(delayed_node);

	/*
	 * We don't reserve space for inode ref deletion is because:
	 * - We ONLY do async inode ref deletion for the inode who has only
	 *   one link(i_nlink == 1), it means there is only one inode ref.
	 *   And in most case, the inode ref and the inode item are in the
	 *   same leaf, and we will deal with them at the same time.
	 *   Since we are sure we will reserve the space for the inode item,
	 *   it is unnecessary to reserve space for inode ref deletion.
	 * - If the inode ref and the inode item are not in the same leaf,
	 *   We also needn't worry about enospc problem, because we reserve
	 *   much more space for the inode update than it needs.
	 * - At the worst, we can steal some space from the global reservation.
	 *   It is very rare.
	 */
	mutex_lock(&delayed_node->mutex);
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		goto release_node;

	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
	delayed_node->count++;
	atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
release_node:
	mutex_unlock(&delayed_node->mutex);
	btrfs_release_delayed_node(delayed_node);
	return 0;
}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
	struct btrfs_root *root = delayed_node->root;
	struct btrfs_delayed_item *curr_item, *prev_item;

	mutex_lock(&delayed_node->mutex);
	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
	while (curr_item) {
		btrfs_delayed_item_release_metadata(root, curr_item);
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
	while (curr_item) {
		btrfs_delayed_item_release_metadata(root, curr_item);
		prev_item = curr_item;
		curr_item = __btrfs_next_delayed_item(prev_item);
		btrfs_release_delayed_item(prev_item);
	}

1929 1930 1931
	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
		btrfs_release_delayed_iref(delayed_node);

1932
	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		btrfs_delayed_inode_release_metadata(root, delayed_node);
		btrfs_release_delayed_inode(delayed_node);
	}
	mutex_unlock(&delayed_node->mutex);
}

void btrfs_kill_delayed_inode_items(struct inode *inode)
{
	struct btrfs_delayed_node *delayed_node;

	delayed_node = btrfs_get_delayed_node(inode);
	if (!delayed_node)
		return;

	__btrfs_kill_delayed_node(delayed_node);
	btrfs_release_delayed_node(delayed_node);
}

void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
	u64 inode_id = 0;
	struct btrfs_delayed_node *delayed_nodes[8];
	int i, n;

	while (1) {
		spin_lock(&root->inode_lock);
		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
					   (void **)delayed_nodes, inode_id,
					   ARRAY_SIZE(delayed_nodes));
		if (!n) {
			spin_unlock(&root->inode_lock);
			break;
		}

		inode_id = delayed_nodes[n - 1]->inode_id + 1;

		for (i = 0; i < n; i++)
			atomic_inc(&delayed_nodes[i]->refs);
		spin_unlock(&root->inode_lock);

		for (i = 0; i < n; i++) {
			__btrfs_kill_delayed_node(delayed_nodes[i]);
			btrfs_release_delayed_node(delayed_nodes[i]);
		}
	}
}
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
{
	struct btrfs_delayed_root *delayed_root;
	struct btrfs_delayed_node *curr_node, *prev_node;

	delayed_root = btrfs_get_delayed_root(root);

	curr_node = btrfs_first_delayed_node(delayed_root);
	while (curr_node) {
		__btrfs_kill_delayed_node(curr_node);

		prev_node = curr_node;
		curr_node = btrfs_next_delayed_node(curr_node);
		btrfs_release_delayed_node(prev_node);
	}
}