lbr.c 29.5 KB
Newer Older
1 2 3 4 5
#include <linux/perf_event.h>
#include <linux/types.h>

#include <asm/perf_event.h>
#include <asm/msr.h>
6
#include <asm/insn.h>
7

8
#include "../perf_event.h"
9 10 11 12 13 14

enum {
	LBR_FORMAT_32		= 0x00,
	LBR_FORMAT_LIP		= 0x01,
	LBR_FORMAT_EIP		= 0x02,
	LBR_FORMAT_EIP_FLAGS	= 0x03,
15
	LBR_FORMAT_EIP_FLAGS2	= 0x04,
16
	LBR_FORMAT_INFO		= 0x05,
17 18
	LBR_FORMAT_TIME		= 0x06,
	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
19 20 21 22 23 24 25 26
};

static enum {
	LBR_EIP_FLAGS		= 1,
	LBR_TSX			= 2,
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
27 28
};

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Intel LBR_SELECT bits
 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
 *
 * Hardware branch filter (not available on all CPUs)
 */
#define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
#define LBR_USER_BIT		1 /* do not capture at ring > 0 */
#define LBR_JCC_BIT		2 /* do not capture conditional branches */
#define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
#define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
#define LBR_RETURN_BIT		5 /* do not capture near returns */
#define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
#define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
#define LBR_FAR_BIT		8 /* do not capture far branches */
44
#define LBR_CALL_STACK_BIT	9 /* enable call stack */
45

46 47 48 49 50 51 52
/*
 * Following bit only exists in Linux; we mask it out before writing it to
 * the actual MSR. But it helps the constraint perf code to understand
 * that this is a separate configuration.
 */
#define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */

53 54 55 56 57 58 59 60 61
#define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
#define LBR_USER	(1 << LBR_USER_BIT)
#define LBR_JCC		(1 << LBR_JCC_BIT)
#define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
#define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
#define LBR_RETURN	(1 << LBR_RETURN_BIT)
#define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
#define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
#define LBR_FAR		(1 << LBR_FAR_BIT)
62
#define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
63
#define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
64 65 66

#define LBR_PLM (LBR_KERNEL | LBR_USER)

67
#define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
68 69 70 71 72 73 74 75 76 77 78 79
#define LBR_NOT_SUPP	-1	/* LBR filter not supported */
#define LBR_IGN		0	/* ignored */

#define LBR_ANY		 \
	(LBR_JCC	|\
	 LBR_REL_CALL	|\
	 LBR_IND_CALL	|\
	 LBR_RETURN	|\
	 LBR_REL_JMP	|\
	 LBR_IND_JMP	|\
	 LBR_FAR)

80 81 82
#define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
#define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
#define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
83

84 85
#define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))

86 87 88 89 90
/*
 * x86control flow change classification
 * x86control flow changes include branches, interrupts, traps, faults
 */
enum {
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	X86_BR_NONE		= 0,      /* unknown */

	X86_BR_USER		= 1 << 0, /* branch target is user */
	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */

	X86_BR_CALL		= 1 << 2, /* call */
	X86_BR_RET		= 1 << 3, /* return */
	X86_BR_SYSCALL		= 1 << 4, /* syscall */
	X86_BR_SYSRET		= 1 << 5, /* syscall return */
	X86_BR_INT		= 1 << 6, /* sw interrupt */
	X86_BR_IRET		= 1 << 7, /* return from interrupt */
	X86_BR_JCC		= 1 << 8, /* conditional */
	X86_BR_JMP		= 1 << 9, /* jump */
	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
	X86_BR_ABORT		= 1 << 12,/* transaction abort */
	X86_BR_IN_TX		= 1 << 13,/* in transaction */
	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
109 110
	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
111
	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
112 113 114
};

#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
115
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
116 117 118 119 120 121 122 123 124 125 126

#define X86_BR_ANY       \
	(X86_BR_CALL    |\
	 X86_BR_RET     |\
	 X86_BR_SYSCALL |\
	 X86_BR_SYSRET  |\
	 X86_BR_INT     |\
	 X86_BR_IRET    |\
	 X86_BR_JCC     |\
	 X86_BR_JMP	 |\
	 X86_BR_IRQ	 |\
127
	 X86_BR_ABORT	 |\
128
	 X86_BR_IND_CALL |\
129
	 X86_BR_IND_JMP  |\
130
	 X86_BR_ZERO_CALL)
131 132 133 134 135 136

#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)

#define X86_BR_ANY_CALL		 \
	(X86_BR_CALL		|\
	 X86_BR_IND_CALL	|\
137
	 X86_BR_ZERO_CALL	|\
138 139 140 141 142 143
	 X86_BR_SYSCALL		|\
	 X86_BR_IRQ		|\
	 X86_BR_INT)

static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);

144 145 146 147 148
/*
 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
 * otherwise it becomes near impossible to get a reliable stack.
 */

149
static void __intel_pmu_lbr_enable(bool pmi)
150
{
151
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
152
	u64 debugctl, lbr_select = 0, orig_debugctl;
153

154 155 156 157 158 159 160
	/*
	 * No need to unfreeze manually, as v4 can do that as part
	 * of the GLOBAL_STATUS ack.
	 */
	if (pmi && x86_pmu.version >= 4)
		return;

161 162 163 164
	/*
	 * No need to reprogram LBR_SELECT in a PMI, as it
	 * did not change.
	 */
165
	if (cpuc->lbr_sel)
166
		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
167
	if (!pmi && cpuc->lbr_sel)
168
		wrmsrl(MSR_LBR_SELECT, lbr_select);
169 170

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
171
	orig_debugctl = debugctl;
172 173 174 175 176 177 178 179
	debugctl |= DEBUGCTLMSR_LBR;
	/*
	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
	 * may cause superfluous increase/decrease of LBR_TOS.
	 */
	if (!(lbr_select & LBR_CALL_STACK))
		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
180 181
	if (orig_debugctl != debugctl)
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
182 183 184 185 186 187 188
}

static void __intel_pmu_lbr_disable(void)
{
	u64 debugctl;

	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
189
	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
}

static void intel_pmu_lbr_reset_32(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++)
		wrmsrl(x86_pmu.lbr_from + i, 0);
}

static void intel_pmu_lbr_reset_64(void)
{
	int i;

	for (i = 0; i < x86_pmu.lbr_nr; i++) {
		wrmsrl(x86_pmu.lbr_from + i, 0);
		wrmsrl(x86_pmu.lbr_to   + i, 0);
208 209
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
			wrmsrl(MSR_LBR_INFO_0 + i, 0);
210 211 212
	}
}

213
void intel_pmu_lbr_reset(void)
214
{
215 216 217
	if (!x86_pmu.lbr_nr)
		return;

218
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
219 220 221 222 223
		intel_pmu_lbr_reset_32();
	else
		intel_pmu_lbr_reset_64();
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * TOS = most recently recorded branch
 */
static inline u64 intel_pmu_lbr_tos(void)
{
	u64 tos;

	rdmsrl(x86_pmu.lbr_tos, tos);
	return tos;
}

enum {
	LBR_NONE,
	LBR_VALID,
};

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/*
 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
 * TSX is not supported they have no consistent behavior:
 *
 *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
 *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
 *     part of the sign extension.
 *
 * Therefore, if:
 *
 *   1) LBR has TSX format
 *   2) CPU has no TSX support enabled
 *
 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
 * value from rdmsr() must be converted to have a 61 bits sign extension,
 * ignoring the TSX flags.
 */
static inline bool lbr_from_signext_quirk_needed(void)
{
	int lbr_format = x86_pmu.intel_cap.lbr_format;
	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
			   boot_cpu_has(X86_FEATURE_RTM);

	return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
}

DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);

/* If quirk is enabled, ensure sign extension is 63 bits: */
inline u64 lbr_from_signext_quirk_wr(u64 val)
{
	if (static_branch_unlikely(&lbr_from_quirk_key)) {
		/*
		 * Sign extend into bits 61:62 while preserving bit 63.
		 *
		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
		 * in val are always OFF and must be changed to be sign
		 * extension bits. Since bits 59:60 are guaranteed to be
		 * part of the sign extension bits, we can just copy them
		 * to 61:62.
		 */
		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
	}
	return val;
}

287 288 289 290 291
/*
 * If quirk is needed, ensure sign extension is 61 bits:
 */
u64 lbr_from_signext_quirk_rd(u64 val)
{
292
	if (static_branch_unlikely(&lbr_from_quirk_key)) {
293 294 295 296 297
		/*
		 * Quirk is on when TSX is not enabled. Therefore TSX
		 * flags must be read as OFF.
		 */
		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
	}
	return val;
}

static inline void wrlbr_from(unsigned int idx, u64 val)
{
	val = lbr_from_signext_quirk_wr(val);
	wrmsrl(x86_pmu.lbr_from + idx, val);
}

static inline void wrlbr_to(unsigned int idx, u64 val)
{
	wrmsrl(x86_pmu.lbr_to + idx, val);
}

static inline u64 rdlbr_from(unsigned int idx)
{
	u64 val;

	rdmsrl(x86_pmu.lbr_from + idx, val);

	return lbr_from_signext_quirk_rd(val);
}

static inline u64 rdlbr_to(unsigned int idx)
{
	u64 val;

326
	rdmsrl(x86_pmu.lbr_to + idx, val);
327

328 329 330
	return val;
}

331 332 333 334 335 336 337 338 339 340 341 342 343
static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
{
	int i;
	unsigned lbr_idx, mask;
	u64 tos;

	if (task_ctx->lbr_callstack_users == 0 ||
	    task_ctx->lbr_stack_state == LBR_NONE) {
		intel_pmu_lbr_reset();
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
344
	tos = task_ctx->tos;
345
	for (i = 0; i < tos; i++) {
346
		lbr_idx = (tos - i) & mask;
347 348 349
		wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
		wrlbr_to  (lbr_idx, task_ctx->lbr_to[i]);

350
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
351
			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
352
	}
353
	wrmsrl(x86_pmu.lbr_tos, tos);
354 355 356 357 358 359
	task_ctx->lbr_stack_state = LBR_NONE;
}

static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
{
	unsigned lbr_idx, mask;
360 361
	u64 tos;
	int i;
362 363 364 365 366 367 368 369

	if (task_ctx->lbr_callstack_users == 0) {
		task_ctx->lbr_stack_state = LBR_NONE;
		return;
	}

	mask = x86_pmu.lbr_nr - 1;
	tos = intel_pmu_lbr_tos();
370
	for (i = 0; i < tos; i++) {
371
		lbr_idx = (tos - i) & mask;
372 373
		task_ctx->lbr_from[i] = rdlbr_from(lbr_idx);
		task_ctx->lbr_to[i]   = rdlbr_to(lbr_idx);
374
		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
375
			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
376
	}
377
	task_ctx->tos = tos;
378 379 380
	task_ctx->lbr_stack_state = LBR_VALID;
}

381 382
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
{
383
	struct x86_perf_task_context *task_ctx;
384

385 386 387 388 389 390 391
	/*
	 * If LBR callstack feature is enabled and the stack was saved when
	 * the task was scheduled out, restore the stack. Otherwise flush
	 * the LBR stack.
	 */
	task_ctx = ctx ? ctx->task_ctx_data : NULL;
	if (task_ctx) {
392
		if (sched_in)
393
			__intel_pmu_lbr_restore(task_ctx);
394
		else
395 396 397 398
			__intel_pmu_lbr_save(task_ctx);
		return;
	}

399
	/*
400 401 402 403 404 405
	 * Since a context switch can flip the address space and LBR entries
	 * are not tagged with an identifier, we need to wipe the LBR, even for
	 * per-cpu events. You simply cannot resolve the branches from the old
	 * address space.
	 */
	if (sched_in)
406 407 408
		intel_pmu_lbr_reset();
}

409 410 411 412 413
static inline bool branch_user_callstack(unsigned br_sel)
{
	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
}

414
void intel_pmu_lbr_add(struct perf_event *event)
415
{
416
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
417
	struct x86_perf_task_context *task_ctx;
418 419 420 421

	if (!x86_pmu.lbr_nr)
		return;

422
	cpuc->br_sel = event->hw.branch_reg.reg;
423

424
	if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
425 426 427 428
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users++;
	}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	/*
	 * Request pmu::sched_task() callback, which will fire inside the
	 * regular perf event scheduling, so that call will:
	 *
	 *  - restore or wipe; when LBR-callstack,
	 *  - wipe; otherwise,
	 *
	 * when this is from __perf_event_task_sched_in().
	 *
	 * However, if this is from perf_install_in_context(), no such callback
	 * will follow and we'll need to reset the LBR here if this is the
	 * first LBR event.
	 *
	 * The problem is, we cannot tell these cases apart... but we can
	 * exclude the biggest chunk of cases by looking at
	 * event->total_time_running. An event that has accrued runtime cannot
	 * be 'new'. Conversely, a new event can get installed through the
	 * context switch path for the first time.
	 */
448
	perf_sched_cb_inc(event->ctx->pmu);
449 450
	if (!cpuc->lbr_users++ && !event->total_time_running)
		intel_pmu_lbr_reset();
451 452
}

453
void intel_pmu_lbr_del(struct perf_event *event)
454
{
455
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
456
	struct x86_perf_task_context *task_ctx;
457 458 459 460

	if (!x86_pmu.lbr_nr)
		return;

461 462
	if (branch_user_callstack(cpuc->br_sel) &&
	    event->ctx->task_ctx_data) {
463 464 465 466
		task_ctx = event->ctx->task_ctx_data;
		task_ctx->lbr_callstack_users--;
	}

467
	cpuc->lbr_users--;
468
	WARN_ON_ONCE(cpuc->lbr_users < 0);
469
	perf_sched_cb_dec(event->ctx->pmu);
470 471
}

472
void intel_pmu_lbr_enable_all(bool pmi)
473
{
474
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
475 476

	if (cpuc->lbr_users)
477
		__intel_pmu_lbr_enable(pmi);
478 479
}

480
void intel_pmu_lbr_disable_all(void)
481
{
482
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
483 484 485 486 487 488 489 490 491 492 493

	if (cpuc->lbr_users)
		__intel_pmu_lbr_disable();
}

static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
{
	unsigned long mask = x86_pmu.lbr_nr - 1;
	u64 tos = intel_pmu_lbr_tos();
	int i;

P
Peter Zijlstra 已提交
494
	for (i = 0; i < x86_pmu.lbr_nr; i++) {
495 496 497 498 499 500 501 502 503 504 505
		unsigned long lbr_idx = (tos - i) & mask;
		union {
			struct {
				u32 from;
				u32 to;
			};
			u64     lbr;
		} msr_lastbranch;

		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);

506 507 508 509
		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
		cpuc->lbr_entries[i].mispred	= 0;
		cpuc->lbr_entries[i].predicted	= 0;
510 511 512
		cpuc->lbr_entries[i].in_tx	= 0;
		cpuc->lbr_entries[i].abort	= 0;
		cpuc->lbr_entries[i].cycles	= 0;
513
		cpuc->lbr_entries[i].reserved	= 0;
514 515 516 517 518 519 520 521 522 523 524
	}
	cpuc->lbr_stack.nr = i;
}

/*
 * Due to lack of segmentation in Linux the effective address (offset)
 * is the same as the linear address, allowing us to merge the LIP and EIP
 * LBR formats.
 */
static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
{
525
	bool need_info = false;
526
	unsigned long mask = x86_pmu.lbr_nr - 1;
527
	int lbr_format = x86_pmu.intel_cap.lbr_format;
528 529
	u64 tos = intel_pmu_lbr_tos();
	int i;
530
	int out = 0;
531
	int num = x86_pmu.lbr_nr;
532

533 534 535 536 537
	if (cpuc->lbr_sel) {
		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
			num = tos;
	}
538 539

	for (i = 0; i < num; i++) {
540
		unsigned long lbr_idx = (tos - i) & mask;
541 542
		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
		int skip = 0;
543
		u16 cycles = 0;
544
		int lbr_flags = lbr_desc[lbr_format];
545

546 547
		from = rdlbr_from(lbr_idx);
		to   = rdlbr_to(lbr_idx);
548

549
		if (lbr_format == LBR_FORMAT_INFO && need_info) {
550 551 552 553 554 555 556 557 558
			u64 info;

			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
			mis = !!(info & LBR_INFO_MISPRED);
			pred = !mis;
			in_tx = !!(info & LBR_INFO_IN_TX);
			abort = !!(info & LBR_INFO_ABORT);
			cycles = (info & LBR_INFO_CYCLES);
		}
559 560 561 562 563 564 565 566 567 568

		if (lbr_format == LBR_FORMAT_TIME) {
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
			skip = 1;
			cycles = ((to >> 48) & LBR_INFO_CYCLES);

			to = (u64)((((s64)to) << 16) >> 16);
		}

569
		if (lbr_flags & LBR_EIP_FLAGS) {
570 571
			mis = !!(from & LBR_FROM_FLAG_MISPRED);
			pred = !mis;
572 573 574 575 576 577
			skip = 1;
		}
		if (lbr_flags & LBR_TSX) {
			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
			abort = !!(from & LBR_FROM_FLAG_ABORT);
			skip = 3;
578
		}
579
		from = (u64)((((s64)from) << skip) >> skip);
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		/*
		 * Some CPUs report duplicated abort records,
		 * with the second entry not having an abort bit set.
		 * Skip them here. This loop runs backwards,
		 * so we need to undo the previous record.
		 * If the abort just happened outside the window
		 * the extra entry cannot be removed.
		 */
		if (abort && x86_pmu.lbr_double_abort && out > 0)
			out--;

		cpuc->lbr_entries[out].from	 = from;
		cpuc->lbr_entries[out].to	 = to;
		cpuc->lbr_entries[out].mispred	 = mis;
		cpuc->lbr_entries[out].predicted = pred;
		cpuc->lbr_entries[out].in_tx	 = in_tx;
		cpuc->lbr_entries[out].abort	 = abort;
598
		cpuc->lbr_entries[out].cycles	 = cycles;
599 600
		cpuc->lbr_entries[out].reserved	 = 0;
		out++;
601
	}
602
	cpuc->lbr_stack.nr = out;
603 604
}

605
void intel_pmu_lbr_read(void)
606
{
607
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
608 609 610 611

	if (!cpuc->lbr_users)
		return;

612
	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
613 614 615
		intel_pmu_lbr_read_32(cpuc);
	else
		intel_pmu_lbr_read_64(cpuc);
616 617 618 619 620 621 622 623 624

	intel_pmu_lbr_filter(cpuc);
}

/*
 * SW filter is used:
 * - in case there is no HW filter
 * - in case the HW filter has errata or limitations
 */
625
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
626 627 628 629 630 631 632
{
	u64 br_type = event->attr.branch_sample_type;
	int mask = 0;

	if (br_type & PERF_SAMPLE_BRANCH_USER)
		mask |= X86_BR_USER;

633
	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
		mask |= X86_BR_KERNEL;

	/* we ignore BRANCH_HV here */

	if (br_type & PERF_SAMPLE_BRANCH_ANY)
		mask |= X86_BR_ANY;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
		mask |= X86_BR_ANY_CALL;

	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;

	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
		mask |= X86_BR_IND_CALL;
649 650 651 652 653 654 655 656 657 658

	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
		mask |= X86_BR_ABORT;

	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
		mask |= X86_BR_IN_TX;

	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
		mask |= X86_BR_NO_TX;

659 660 661
	if (br_type & PERF_SAMPLE_BRANCH_COND)
		mask |= X86_BR_JCC;

662 663 664 665 666 667 668 669 670
	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
		if (!x86_pmu_has_lbr_callstack())
			return -EOPNOTSUPP;
		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
			return -EINVAL;
		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
			X86_BR_CALL_STACK;
	}

671 672 673
	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
		mask |= X86_BR_IND_JMP;

674 675
	if (br_type & PERF_SAMPLE_BRANCH_CALL)
		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
676 677 678 679 680
	/*
	 * stash actual user request into reg, it may
	 * be used by fixup code for some CPU
	 */
	event->hw.branch_reg.reg = mask;
681
	return 0;
682 683
}

684 685 686 687 688 689 690 691 692
/*
 * setup the HW LBR filter
 * Used only when available, may not be enough to disambiguate
 * all branches, may need the help of the SW filter
 */
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
{
	struct hw_perf_event_extra *reg;
	u64 br_type = event->attr.branch_sample_type;
693 694
	u64 mask = 0, v;
	int i;
695

696
	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
697
		if (!(br_type & (1ULL << i)))
698 699
			continue;

700
		v = x86_pmu.lbr_sel_map[i];
701 702 703
		if (v == LBR_NOT_SUPP)
			return -EOPNOTSUPP;

704 705
		if (v != LBR_IGN)
			mask |= v;
706
	}
707

708 709 710
	reg = &event->hw.branch_reg;
	reg->idx = EXTRA_REG_LBR;

711 712 713 714
	/*
	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
	 * in suppress mode. So LBR_SELECT should be set to
	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
715 716
	 * But the 10th bit LBR_CALL_STACK does not operate
	 * in suppress mode.
717
	 */
718
	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
719

720 721 722 723 724
	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
		reg->config |= LBR_NO_INFO;

725 726 727 728 729
	return 0;
}

int intel_pmu_setup_lbr_filter(struct perf_event *event)
{
730
	int ret = 0;
731 732 733 734 735 736 737 738

	/*
	 * no LBR on this PMU
	 */
	if (!x86_pmu.lbr_nr)
		return -EOPNOTSUPP;

	/*
739
	 * setup SW LBR filter
740
	 */
741 742 743
	ret = intel_pmu_setup_sw_lbr_filter(event);
	if (ret)
		return ret;
744 745 746 747 748 749 750 751 752 753 754 755

	/*
	 * setup HW LBR filter, if any
	 */
	if (x86_pmu.lbr_sel_map)
		ret = intel_pmu_setup_hw_lbr_filter(event);

	return ret;
}

/*
 * return the type of control flow change at address "from"
756
 * instruction is not necessarily a branch (in case of interrupt).
757 758 759 760 761 762 763 764
 *
 * The branch type returned also includes the priv level of the
 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
 *
 * If a branch type is unknown OR the instruction cannot be
 * decoded (e.g., text page not present), then X86_BR_NONE is
 * returned.
 */
765
static int branch_type(unsigned long from, unsigned long to, int abort)
766 767 768
{
	struct insn insn;
	void *addr;
769
	int bytes_read, bytes_left;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	int ret = X86_BR_NONE;
	int ext, to_plm, from_plm;
	u8 buf[MAX_INSN_SIZE];
	int is64 = 0;

	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;

	/*
	 * maybe zero if lbr did not fill up after a reset by the time
	 * we get a PMU interrupt
	 */
	if (from == 0 || to == 0)
		return X86_BR_NONE;

785 786 787
	if (abort)
		return X86_BR_ABORT | to_plm;

788 789 790 791 792 793 794 795 796
	if (from_plm == X86_BR_USER) {
		/*
		 * can happen if measuring at the user level only
		 * and we interrupt in a kernel thread, e.g., idle.
		 */
		if (!current->mm)
			return X86_BR_NONE;

		/* may fail if text not present */
797 798 799 800
		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
						MAX_INSN_SIZE);
		bytes_read = MAX_INSN_SIZE - bytes_left;
		if (!bytes_read)
801 802 803
			return X86_BR_NONE;

		addr = buf;
804 805 806 807 808 809 810
	} else {
		/*
		 * The LBR logs any address in the IP, even if the IP just
		 * faulted. This means userspace can control the from address.
		 * Ensure we don't blindy read any address by validating it is
		 * a known text address.
		 */
811
		if (kernel_text_address(from)) {
812
			addr = (void *)from;
813 814 815 816 817 818 819 820 821
			/*
			 * Assume we can get the maximum possible size
			 * when grabbing kernel data.  This is not
			 * _strictly_ true since we could possibly be
			 * executing up next to a memory hole, but
			 * it is very unlikely to be a problem.
			 */
			bytes_read = MAX_INSN_SIZE;
		} else {
822
			return X86_BR_NONE;
823
		}
824
	}
825 826 827 828 829 830 831 832

	/*
	 * decoder needs to know the ABI especially
	 * on 64-bit systems running 32-bit apps
	 */
#ifdef CONFIG_X86_64
	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
#endif
833
	insn_init(&insn, addr, bytes_read, is64);
834
	insn_get_opcode(&insn);
835 836
	if (!insn.opcode.got)
		return X86_BR_ABORT;
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

	switch (insn.opcode.bytes[0]) {
	case 0xf:
		switch (insn.opcode.bytes[1]) {
		case 0x05: /* syscall */
		case 0x34: /* sysenter */
			ret = X86_BR_SYSCALL;
			break;
		case 0x07: /* sysret */
		case 0x35: /* sysexit */
			ret = X86_BR_SYSRET;
			break;
		case 0x80 ... 0x8f: /* conditional */
			ret = X86_BR_JCC;
			break;
		default:
			ret = X86_BR_NONE;
		}
		break;
	case 0x70 ... 0x7f: /* conditional */
		ret = X86_BR_JCC;
		break;
	case 0xc2: /* near ret */
	case 0xc3: /* near ret */
	case 0xca: /* far ret */
	case 0xcb: /* far ret */
		ret = X86_BR_RET;
		break;
	case 0xcf: /* iret */
		ret = X86_BR_IRET;
		break;
	case 0xcc ... 0xce: /* int */
		ret = X86_BR_INT;
		break;
	case 0xe8: /* call near rel */
872 873 874 875 876 877
		insn_get_immediate(&insn);
		if (insn.immediate1.value == 0) {
			/* zero length call */
			ret = X86_BR_ZERO_CALL;
			break;
		}
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	case 0x9a: /* call far absolute */
		ret = X86_BR_CALL;
		break;
	case 0xe0 ... 0xe3: /* loop jmp */
		ret = X86_BR_JCC;
		break;
	case 0xe9 ... 0xeb: /* jmp */
		ret = X86_BR_JMP;
		break;
	case 0xff: /* call near absolute, call far absolute ind */
		insn_get_modrm(&insn);
		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
		switch (ext) {
		case 2: /* near ind call */
		case 3: /* far ind call */
			ret = X86_BR_IND_CALL;
			break;
		case 4:
		case 5:
897
			ret = X86_BR_IND_JMP;
898 899 900 901 902
			break;
		}
		break;
	default:
		ret = X86_BR_NONE;
903 904
	}
	/*
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	 * interrupts, traps, faults (and thus ring transition) may
	 * occur on any instructions. Thus, to classify them correctly,
	 * we need to first look at the from and to priv levels. If they
	 * are different and to is in the kernel, then it indicates
	 * a ring transition. If the from instruction is not a ring
	 * transition instr (syscall, systenter, int), then it means
	 * it was a irq, trap or fault.
	 *
	 * we have no way of detecting kernel to kernel faults.
	 */
	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
		ret = X86_BR_IRQ;

	/*
	 * branch priv level determined by target as
	 * is done by HW when LBR_SELECT is implemented
922
	 */
923 924
	if (ret != X86_BR_NONE)
		ret |= to_plm;
925

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	return ret;
}

/*
 * implement actual branch filter based on user demand.
 * Hardware may not exactly satisfy that request, thus
 * we need to inspect opcodes. Mismatched branches are
 * discarded. Therefore, the number of branches returned
 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
 */
static void
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
{
	u64 from, to;
	int br_sel = cpuc->br_sel;
	int i, j, type;
	bool compress = false;

	/* if sampling all branches, then nothing to filter */
	if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
		return;

	for (i = 0; i < cpuc->lbr_stack.nr; i++) {

		from = cpuc->lbr_entries[i].from;
		to = cpuc->lbr_entries[i].to;

953 954 955 956 957 958 959
		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
			if (cpuc->lbr_entries[i].in_tx)
				type |= X86_BR_IN_TX;
			else
				type |= X86_BR_NO_TX;
		}
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982

		/* if type does not correspond, then discard */
		if (type == X86_BR_NONE || (br_sel & type) != type) {
			cpuc->lbr_entries[i].from = 0;
			compress = true;
		}
	}

	if (!compress)
		return;

	/* remove all entries with from=0 */
	for (i = 0; i < cpuc->lbr_stack.nr; ) {
		if (!cpuc->lbr_entries[i].from) {
			j = i;
			while (++j < cpuc->lbr_stack.nr)
				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
			cpuc->lbr_stack.nr--;
			if (!cpuc->lbr_entries[i].from)
				continue;
		}
		i++;
	}
983 984
}

985 986 987
/*
 * Map interface branch filters onto LBR filters
 */
988
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
989 990 991 992 993 994
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
						| LBR_IND_JMP | LBR_FAR,
995 996 997
	/*
	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
	 */
998
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
999 1000 1001 1002
	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
	/*
	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
	 */
1003 1004
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1005
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1006 1007
};

1008
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1009 1010 1011 1012 1013 1014 1015 1016 1017
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1018
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1019
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1020 1021
};

1022
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_FAR,
	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
						| LBR_RETURN | LBR_CALL_STACK,
1034
	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1035
	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1036 1037
};

1038
/* core */
1039
void __init intel_pmu_lbr_init_core(void)
1040 1041
{
	x86_pmu.lbr_nr     = 4;
1042 1043 1044
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1045

1046 1047 1048 1049
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1050 1051
}

1052
/* nehalem/westmere */
1053
void __init intel_pmu_lbr_init_nhm(void)
1054 1055
{
	x86_pmu.lbr_nr     = 16;
1056 1057 1058
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1059 1060 1061 1062

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

1063 1064 1065 1066 1067 1068 1069
	/*
	 * SW branch filter usage:
	 * - workaround LBR_SEL errata (see above)
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
1070 1071
}

1072
/* sandy bridge */
1073
void __init intel_pmu_lbr_init_snb(void)
1074 1075 1076 1077 1078 1079 1080 1081 1082
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;

1083 1084 1085 1086 1087 1088
	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
1089 1090
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/* haswell */
void intel_pmu_lbr_init_hsw(void)
{
	x86_pmu.lbr_nr	 = 16;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1101 1102 1103

	if (lbr_from_signext_quirk_needed())
		static_branch_enable(&lbr_from_quirk_key);
1104 1105
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
/* skylake */
__init void intel_pmu_lbr_init_skl(void)
{
	x86_pmu.lbr_nr	 = 32;
	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - support syscall, sysret capture.
	 *   That requires LBR_FAR but that means far
	 *   jmp need to be filtered out
	 */
}

1125
/* atom */
1126
void __init intel_pmu_lbr_init_atom(void)
1127
{
1128 1129 1130 1131 1132
	/*
	 * only models starting at stepping 10 seems
	 * to have an operational LBR which can freeze
	 * on PMU interrupt
	 */
1133 1134
	if (boot_cpu_data.x86_model == 28
	    && boot_cpu_data.x86_mask < 10) {
1135 1136 1137 1138
		pr_cont("LBR disabled due to erratum");
		return;
	}

1139
	x86_pmu.lbr_nr	   = 8;
1140 1141 1142
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1143

1144 1145 1146 1147
	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
1148
}
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/* slm */
void __init intel_pmu_lbr_init_slm(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;

	/*
	 * SW branch filter usage:
	 * - compensate for lack of HW filter
	 */
	pr_cont("8-deep LBR, ");
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/* Knights Landing */
void intel_pmu_lbr_init_knl(void)
{
	x86_pmu.lbr_nr	   = 8;
	x86_pmu.lbr_tos    = MSR_LBR_TOS;
	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;

	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
}