ctree.c 31.4 KB
Newer Older
1 2 3
#include <stdio.h>
#include <stdlib.h>
#include "kerncompat.h"
4 5 6
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
7

8 9
static int refill_alloc_extent(struct ctree_root *root);

10 11 12 13 14
static inline void init_path(struct ctree_path *p)
{
	memset(p, 0, sizeof(*p));
}

15 16 17 18 19 20 21 22 23 24
static void release_path(struct ctree_root *root, struct ctree_path *p)
{
	int i;
	for (i = 0; i < MAX_LEVEL; i++) {
		if (!p->nodes[i])
			break;
		tree_block_release(root, p->nodes[i]);
	}
}

C
Chris Mason 已提交
25 26 27 28 29
/*
 * The leaf data grows from end-to-front in the node.
 * this returns the address of the start of the last item,
 * which is the stop of the leaf data stack
 */
30 31 32 33
static inline unsigned int leaf_data_end(struct leaf *leaf)
{
	unsigned int nr = leaf->header.nritems;
	if (nr == 0)
34
		return sizeof(leaf->data);
35 36 37
	return leaf->items[nr-1].offset;
}

C
Chris Mason 已提交
38 39 40 41 42
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
43 44 45 46 47 48 49 50
static inline int leaf_free_space(struct leaf *leaf)
{
	int data_end = leaf_data_end(leaf);
	int nritems = leaf->header.nritems;
	char *items_end = (char *)(leaf->items + nritems + 1);
	return (char *)(leaf->data + data_end) - (char *)items_end;
}

C
Chris Mason 已提交
51 52 53
/*
 * compare two keys in a memcmp fashion
 */
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
int comp_keys(struct key *k1, struct key *k2)
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->flags > k2->flags)
		return 1;
	if (k1->flags < k2->flags)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
C
Chris Mason 已提交
70 71 72 73 74 75 76 77 78 79

/*
 * search for key in the array p.  items p are item_size apart
 * and there are 'max' items in p
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
int generic_bin_search(char *p, int item_size, struct key *key,
		       int max, int *slot)
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
	struct key *tmp;

	while(low < high) {
		mid = (low + high) / 2;
		tmp = (struct key *)(p + mid * item_size);
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

int bin_search(struct node *c, struct key *key, int *slot)
{
	if (is_leaf(c->header.flags)) {
		struct leaf *l = (struct leaf *)c;
		return generic_bin_search((void *)l->items, sizeof(struct item),
					  key, c->header.nritems, slot);
	} else {
		return generic_bin_search((void *)c->keys, sizeof(struct key),
					  key, c->header.nritems, slot);
	}
	return -1;
}

C
Chris Mason 已提交
120 121 122 123 124 125 126 127
/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
 * be inserted.
 */
128 129
int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p)
{
130 131 132
	struct tree_buffer *b = root->node;
	struct node *c;

133 134 135
	int slot;
	int ret;
	int level;
136 137 138
	b->count++;
	while (b) {
		c = &b->node;
139
		level = node_level(c->header.flags);
140
		p->nodes[level] = b;
141 142 143 144 145
		ret = bin_search(c, key, &slot);
		if (!is_leaf(c->header.flags)) {
			if (ret && slot > 0)
				slot -= 1;
			p->slots[level] = slot;
146
			b = read_tree_block(root, c->blockptrs[slot]);
147 148 149 150 151 152 153 154 155
			continue;
		} else {
			p->slots[level] = slot;
			return ret;
		}
	}
	return -1;
}

C
Chris Mason 已提交
156 157 158 159 160 161 162
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
 */
163 164 165
static void fixup_low_keys(struct ctree_root *root,
			   struct ctree_path *path, struct key *key,
			   int level)
166 167 168
{
	int i;
	for (i = level; i < MAX_LEVEL; i++) {
169
		struct node *t;
170
		int tslot = path->slots[i];
171
		if (!path->nodes[i])
172
			break;
173
		t = &path->nodes[i]->node;
174
		memcpy(t->keys + tslot, key, sizeof(*key));
175
		write_tree_block(root, path->nodes[i]);
176 177 178 179 180
		if (tslot != 0)
			break;
	}
}

C
Chris Mason 已提交
181 182 183 184 185 186 187 188 189 190
/*
 * try to push data from one node into the next node left in the
 * tree.  The src node is found at specified level in the path.
 * If some bytes were pushed, return 0, otherwise return 1.
 *
 * Lower nodes/leaves in the path are not touched, higher nodes may
 * be modified to reflect the push.
 *
 * The path is altered to reflect the push.
 */
191 192 193 194 195 196 197 198
int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
{
	int slot;
	struct node *left;
	struct node *right;
	int push_items = 0;
	int left_nritems;
	int right_nritems;
199 200
	struct tree_buffer *t;
	struct tree_buffer *right_buf;
201 202 203 204 205 206 207

	if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
		return 1;
	slot = path->slots[level + 1];
	if (slot == 0)
		return 1;

208 209 210 211 212
	t = read_tree_block(root,
		            path->nodes[level + 1]->node.blockptrs[slot - 1]);
	left = &t->node;
	right_buf = path->nodes[level];
	right = &right_buf->node;
213 214 215
	left_nritems = left->header.nritems;
	right_nritems = right->header.nritems;
	push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1);
216 217
	if (push_items <= 0) {
		tree_block_release(root, t);
218
		return 1;
219
	}
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

	if (right_nritems < push_items)
		push_items = right_nritems;
	memcpy(left->keys + left_nritems, right->keys,
		push_items * sizeof(struct key));
	memcpy(left->blockptrs + left_nritems, right->blockptrs,
		push_items * sizeof(u64));
	memmove(right->keys, right->keys + push_items,
		(right_nritems - push_items) * sizeof(struct key));
	memmove(right->blockptrs, right->blockptrs + push_items,
		(right_nritems - push_items) * sizeof(u64));
	right->header.nritems -= push_items;
	left->header.nritems += push_items;

	/* adjust the pointers going up the tree */
235 236 237 238
	fixup_low_keys(root, path, right->keys, level + 1);

	write_tree_block(root, t);
	write_tree_block(root, right_buf);
239 240 241 242

	/* then fixup the leaf pointer in the path */
	if (path->slots[level] < push_items) {
		path->slots[level] += left_nritems;
243 244
		tree_block_release(root, path->nodes[level]);
		path->nodes[level] = t;
245 246 247
		path->slots[level + 1] -= 1;
	} else {
		path->slots[level] -= push_items;
248
		tree_block_release(root, t);
249 250 251 252
	}
	return 0;
}

C
Chris Mason 已提交
253 254 255 256 257 258 259 260 261 262
/*
 * try to push data from one node into the next node right in the
 * tree.  The src node is found at specified level in the path.
 * If some bytes were pushed, return 0, otherwise return 1.
 *
 * Lower nodes/leaves in the path are not touched, higher nodes may
 * be modified to reflect the push.
 *
 * The path is altered to reflect the push.
 */
263 264 265
int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
{
	int slot;
266 267
	struct tree_buffer *t;
	struct tree_buffer *src_buffer;
268 269 270 271 272 273
	struct node *dst;
	struct node *src;
	int push_items = 0;
	int dst_nritems;
	int src_nritems;

C
Chris Mason 已提交
274
	/* can't push from the root */
275 276
	if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
		return 1;
C
Chris Mason 已提交
277 278

	/* only try to push inside the node higher up */
279 280 281 282
	slot = path->slots[level + 1];
	if (slot == NODEPTRS_PER_BLOCK - 1)
		return 1;

283
	if (slot >= path->nodes[level + 1]->node.header.nritems -1)
284 285
		return 1;

286 287 288 289 290
	t = read_tree_block(root,
			    path->nodes[level + 1]->node.blockptrs[slot + 1]);
	dst = &t->node;
	src_buffer = path->nodes[level];
	src = &src_buffer->node;
291 292 293
	dst_nritems = dst->header.nritems;
	src_nritems = src->header.nritems;
	push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1);
294 295
	if (push_items <= 0) {
		tree_block_release(root, t);
296
		return 1;
297
	}
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

	if (src_nritems < push_items)
		push_items = src_nritems;
	memmove(dst->keys + push_items, dst->keys,
		dst_nritems * sizeof(struct key));
	memcpy(dst->keys, src->keys + src_nritems - push_items,
		push_items * sizeof(struct key));

	memmove(dst->blockptrs + push_items, dst->blockptrs,
		dst_nritems * sizeof(u64));
	memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
		push_items * sizeof(u64));

	src->header.nritems -= push_items;
	dst->header.nritems += push_items;

	/* adjust the pointers going up the tree */
315
	memcpy(path->nodes[level + 1]->node.keys + path->slots[level + 1] + 1,
316
		dst->keys, sizeof(struct key));
317 318 319 320 321

	write_tree_block(root, path->nodes[level + 1]);
	write_tree_block(root, t);
	write_tree_block(root, src_buffer);

C
Chris Mason 已提交
322
	/* then fixup the pointers in the path */
323 324
	if (path->slots[level] >= src->header.nritems) {
		path->slots[level] -= src->header.nritems;
325 326
		tree_block_release(root, path->nodes[level]);
		path->nodes[level] = t;
327
		path->slots[level + 1] += 1;
328 329
	} else {
		tree_block_release(root, t);
330 331 332 333
	}
	return 0;
}

C
Chris Mason 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
int __insert_ptr(struct ctree_root *root,
		struct ctree_path *path, struct key *key,
		u64 blocknr, int slot, int level)
{
	struct node *c;
	struct node *lower;
	struct key *lower_key;
	int nritems;
	/* need a new root */
	if (!path->nodes[level]) {
		struct tree_buffer *t;
		t = alloc_free_block(root);
		c = &t->node;
		memset(c, 0, sizeof(c));
		c->header.nritems = 2;
		c->header.flags = node_level(level);
		c->header.blocknr = t->blocknr;
		lower = &path->nodes[level-1]->node;
		if (is_leaf(lower->header.flags))
			lower_key = &((struct leaf *)lower)->items[0].key;
		else
			lower_key = lower->keys;
		memcpy(c->keys, lower_key, sizeof(struct key));
		memcpy(c->keys + 1, key, sizeof(struct key));
		c->blockptrs[0] = path->nodes[level-1]->blocknr;
		c->blockptrs[1] = blocknr;
		/* the path has an extra ref to root->node */
		tree_block_release(root, root->node);
		root->node = t;
		t->count++;
		write_tree_block(root, t);
		path->nodes[level] = t;
		path->slots[level] = 0;
		if (c->keys[1].objectid == 0)
			BUG();
		return 0;
	}
	lower = &path->nodes[level]->node;
	nritems = lower->header.nritems;
	if (slot > nritems)
		BUG();
	if (nritems == NODEPTRS_PER_BLOCK)
		BUG();
	if (slot != nritems) {
		memmove(lower->keys + slot + 1, lower->keys + slot,
			(nritems - slot) * sizeof(struct key));
		memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
			(nritems - slot) * sizeof(u64));
	}
	memcpy(lower->keys + slot, key, sizeof(struct key));
	lower->blockptrs[slot] = blocknr;
	lower->header.nritems++;
	if (lower->keys[1].objectid == 0)
			BUG();
	write_tree_block(root, path->nodes[level]);
	return 0;
}


/*
 * insert a key,blocknr pair into the tree at a given level
 * If the node at that level in the path doesn't have room,
 * it is split or shifted as appropriate.
 */
404 405 406 407
int insert_ptr(struct ctree_root *root,
		struct ctree_path *path, struct key *key,
		u64 blocknr, int level)
{
408 409
	struct tree_buffer *t = path->nodes[level];
	struct node *c = &path->nodes[level]->node;
410
	struct node *b;
411 412
	struct tree_buffer *b_buffer;
	struct tree_buffer *bal[MAX_LEVEL];
413 414 415 416
	int bal_level = level;
	int mid;
	int bal_start = -1;

C
Chris Mason 已提交
417 418 419 420 421 422 423 424 425
	/*
	 * check to see if we need to make room in the node for this
	 * pointer.  If we do, keep walking the tree, making sure there
	 * is enough room in each level for the required insertions.
	 *
	 * The bal array is filled in with any nodes to be inserted
	 * due to splitting.  Once we've done all the splitting required
	 * do the inserts based on the data in the bal array.
	 */
426
	memset(bal, 0, sizeof(bal));
427 428
	while(t && t->node.header.nritems == NODEPTRS_PER_BLOCK) {
		c = &t->node;
429 430 431 432 433 434 435 436 437
		if (push_node_left(root, path,
		   node_level(c->header.flags)) == 0)
			break;
		if (push_node_right(root, path,
		   node_level(c->header.flags)) == 0)
			break;
		bal_start = bal_level;
		if (bal_level == MAX_LEVEL - 1)
			BUG();
438 439
		b_buffer = alloc_free_block(root);
		b = &b_buffer->node;
440
		b->header.flags = c->header.flags;
441
		b->header.blocknr = b_buffer->blocknr;
442 443 444 445 446 447 448
		mid = (c->header.nritems + 1) / 2;
		memcpy(b->keys, c->keys + mid,
			(c->header.nritems - mid) * sizeof(struct key));
		memcpy(b->blockptrs, c->blockptrs + mid,
			(c->header.nritems - mid) * sizeof(u64));
		b->header.nritems = c->header.nritems - mid;
		c->header.nritems = mid;
449 450 451 452 453

		write_tree_block(root, t);
		write_tree_block(root, b_buffer);

		bal[bal_level] = b_buffer;
454 455 456
		if (bal_level == MAX_LEVEL - 1)
			break;
		bal_level += 1;
457
		t = path->nodes[bal_level];
458
	}
C
Chris Mason 已提交
459 460 461 462 463
	/*
	 * bal_start tells us the first level in the tree that needed to
	 * be split.  Go through the bal array inserting the new nodes
	 * as needed.  The path is fixed as we go.
	 */
464
	while(bal_start > 0) {
465 466 467
		b_buffer = bal[bal_start];
		c = &path->nodes[bal_start]->node;
		__insert_ptr(root, path, b_buffer->node.keys, b_buffer->blocknr,
468 469 470
				path->slots[bal_start + 1] + 1, bal_start + 1);
		if (path->slots[bal_start] >= c->header.nritems) {
			path->slots[bal_start] -= c->header.nritems;
471 472
			tree_block_release(root, path->nodes[bal_start]);
			path->nodes[bal_start] = b_buffer;
473
			path->slots[bal_start + 1] += 1;
474 475
		} else {
			tree_block_release(root, b_buffer);
476 477 478 479 480
		}
		bal_start--;
		if (!bal[bal_start])
			break;
	}
C
Chris Mason 已提交
481
	/* Now that the tree has room, insert the requested pointer */
482 483 484 485
	return __insert_ptr(root, path, key, blocknr, path->slots[level] + 1,
			    level);
}

C
Chris Mason 已提交
486 487 488 489 490
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
491 492 493 494 495 496 497 498 499 500 501 502 503
int leaf_space_used(struct leaf *l, int start, int nr)
{
	int data_len;
	int end = start + nr - 1;

	if (!nr)
		return 0;
	data_len = l->items[start].offset + l->items[start].size;
	data_len = data_len - l->items[end].offset;
	data_len += sizeof(struct item) * nr;
	return data_len;
}

C
Chris Mason 已提交
504 505 506 507
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 */
508 509 510
int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
		   int data_size)
{
511 512 513
	struct tree_buffer *right_buf = path->nodes[0];
	struct leaf *right = &right_buf->leaf;
	struct tree_buffer *t;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	struct leaf *left;
	int slot;
	int i;
	int free_space;
	int push_space = 0;
	int push_items = 0;
	struct item *item;
	int old_left_nritems;

	slot = path->slots[1];
	if (slot == 0) {
		return 1;
	}
	if (!path->nodes[1]) {
		return 1;
	}
530 531
	t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
	left = &t->leaf;
532 533
	free_space = leaf_free_space(left);
	if (free_space < data_size + sizeof(struct item)) {
534
		tree_block_release(root, t);
535 536 537 538 539 540 541 542 543 544 545 546
		return 1;
	}
	for (i = 0; i < right->header.nritems; i++) {
		item = right->items + i;
		if (path->slots[0] == i)
			push_space += data_size + sizeof(*item);
		if (item->size + sizeof(*item) + push_space > free_space)
			break;
		push_items++;
		push_space += item->size + sizeof(*item);
	}
	if (push_items == 0) {
547
		tree_block_release(root, t);
548 549 550 551 552 553 554 555 556 557
		return 1;
	}
	/* push data from right to left */
	memcpy(left->items + left->header.nritems,
		right->items, push_items * sizeof(struct item));
	push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
	memcpy(left->data + leaf_data_end(left) - push_space,
		right->data + right->items[push_items - 1].offset,
		push_space);
	old_left_nritems = left->header.nritems;
558 559
	BUG_ON(old_left_nritems < 0);

560 561 562 563 564 565 566 567 568 569 570 571 572 573
	for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
		left->items[i].offset -= LEAF_DATA_SIZE -
			left->items[old_left_nritems -1].offset;
	}
	left->header.nritems += push_items;

	/* fixup right node */
	push_space = right->items[push_items-1].offset - leaf_data_end(right);
	memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
		leaf_data_end(right), push_space);
	memmove(right->items, right->items + push_items,
		(right->header.nritems - push_items) * sizeof(struct item));
	right->header.nritems -= push_items;
	push_space = LEAF_DATA_SIZE;
574

575 576 577 578
	for (i = 0; i < right->header.nritems; i++) {
		right->items[i].offset = push_space - right->items[i].size;
		push_space = right->items[i].offset;
	}
579 580 581 582 583

	write_tree_block(root, t);
	write_tree_block(root, right_buf);

	fixup_low_keys(root, path, &right->items[0].key, 1);
584 585 586 587

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
588 589
		tree_block_release(root, path->nodes[0]);
		path->nodes[0] = t;
590 591
		path->slots[1] -= 1;
	} else {
592
		tree_block_release(root, t);
593 594
		path->slots[0] -= push_items;
	}
595
	BUG_ON(path->slots[0] < 0);
596 597 598
	return 0;
}

C
Chris Mason 已提交
599 600 601 602
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
603 604
int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
{
605 606 607 608 609
	struct tree_buffer *l_buf = path->nodes[0];
	struct leaf *l = &l_buf->leaf;
	int nritems;
	int mid;
	int slot;
610
	struct leaf *right;
611
	struct tree_buffer *right_buffer;
612 613 614 615 616 617 618
	int space_needed = data_size + sizeof(struct item);
	int data_copy_size;
	int rt_data_off;
	int i;
	int ret;

	if (push_leaf_left(root, path, data_size) == 0) {
619 620 621 622
		l_buf = path->nodes[0];
		l = &l_buf->leaf;
		if (leaf_free_space(l) >= sizeof(struct item) + data_size)
			return 0;
623
	}
624 625 626 627 628 629 630 631
	slot = path->slots[0];
	nritems = l->header.nritems;
	mid = (nritems + 1)/ 2;

	right_buffer = alloc_free_block(root);
	BUG_ON(!right_buffer);
	BUG_ON(mid == nritems);
	right = &right_buffer->leaf;
632 633 634 635 636 637 638 639 640 641 642
	memset(right, 0, sizeof(*right));
	if (mid <= slot) {
		if (leaf_space_used(l, mid, nritems - mid) + space_needed >
			LEAF_DATA_SIZE)
			BUG();
	} else {
		if (leaf_space_used(l, 0, mid + 1) + space_needed >
			LEAF_DATA_SIZE)
			BUG();
	}
	right->header.nritems = nritems - mid;
643 644
	right->header.blocknr = right_buffer->blocknr;
	right->header.flags = node_level(0);
645 646 647 648 649 650 651 652
	data_copy_size = l->items[mid].offset + l->items[mid].size -
			 leaf_data_end(l);
	memcpy(right->items, l->items + mid,
	       (nritems - mid) * sizeof(struct item));
	memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
	       l->data + leaf_data_end(l), data_copy_size);
	rt_data_off = LEAF_DATA_SIZE -
		     (l->items[mid].offset + l->items[mid].size);
C
Chris Mason 已提交
653 654

	for (i = 0; i < right->header.nritems; i++)
655
		right->items[i].offset += rt_data_off;
C
Chris Mason 已提交
656

657 658
	l->header.nritems = mid;
	ret = insert_ptr(root, path, &right->items[0].key,
659 660 661 662 663 664
			  right_buffer->blocknr, 1);

	write_tree_block(root, right_buffer);
	write_tree_block(root, l_buf);

	BUG_ON(path->slots[0] != slot);
665
	if (mid <= slot) {
666 667
		tree_block_release(root, path->nodes[0]);
		path->nodes[0] = right_buffer;
668 669
		path->slots[0] -= mid;
		path->slots[1] += 1;
670 671 672
	} else
		tree_block_release(root, right_buffer);
	BUG_ON(path->slots[0] < 0);
673 674 675
	return ret;
}

C
Chris Mason 已提交
676 677 678 679
/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
680 681 682 683 684
int insert_item(struct ctree_root *root, struct key *key,
			  void *data, int data_size)
{
	int ret;
	int slot;
685
	int slot_orig;
686
	struct leaf *leaf;
687
	struct tree_buffer *leaf_buf;
688 689 690 691
	unsigned int nritems;
	unsigned int data_end;
	struct ctree_path path;

C
Chris Mason 已提交
692
	/* create a root if there isn't one */
693 694 695 696 697 698 699 700 701 702
	if (!root->node) {
		struct tree_buffer *t;
		t = alloc_free_block(root);
		BUG_ON(!t);
		t->node.header.nritems = 0;
		t->node.header.flags = node_level(0);
		t->node.header.blocknr = t->blocknr;
		root->node = t;
		write_tree_block(root, t);
	}
703 704
	init_path(&path);
	ret = search_slot(root, key, &path);
705 706
	if (ret == 0) {
		release_path(root, &path);
707
		return -EEXIST;
708
	}
709

710 711 712
	slot_orig = path.slots[0];
	leaf_buf = path.nodes[0];
	leaf = &leaf_buf->leaf;
C
Chris Mason 已提交
713 714

	/* make room if needed */
715
	if (leaf_free_space(leaf) <  sizeof(struct item) + data_size) {
716
		split_leaf(root, &path, data_size);
717 718 719
		leaf_buf = path.nodes[0];
		leaf = &path.nodes[0]->leaf;
	}
720 721
	nritems = leaf->header.nritems;
	data_end = leaf_data_end(leaf);
722

723 724 725 726
	if (leaf_free_space(leaf) <  sizeof(struct item) + data_size)
		BUG();

	slot = path.slots[0];
727
	BUG_ON(slot < 0);
728
	if (slot == 0)
729
		fixup_low_keys(root, &path, key, 1);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	if (slot != nritems) {
		int i;
		unsigned int old_data = leaf->items[slot].offset +
					leaf->items[slot].size;

		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
		for (i = slot; i < nritems; i++)
			leaf->items[i].offset -= data_size;

		/* shift the items */
		memmove(leaf->items + slot + 1, leaf->items + slot,
		        (nritems - slot) * sizeof(struct item));

		/* shift the data */
		memmove(leaf->data + data_end - data_size, leaf->data +
		        data_end, old_data - data_end);
		data_end = old_data;
	}
C
Chris Mason 已提交
751
	/* copy the new data in */
752 753 754 755 756
	memcpy(&leaf->items[slot].key, key, sizeof(struct key));
	leaf->items[slot].offset = data_end - data_size;
	leaf->items[slot].size = data_size;
	memcpy(leaf->data + data_end - data_size, data, data_size);
	leaf->header.nritems += 1;
757
	write_tree_block(root, leaf_buf);
758 759
	if (leaf_free_space(leaf) < 0)
		BUG();
760
	release_path(root, &path);
761
	refill_alloc_extent(root);
762 763 764
	return 0;
}

C
Chris Mason 已提交
765 766 767 768 769 770 771 772
/*
 * delete the pointer from a given level in the path.  The path is not
 * fixed up, so after calling this it is not valid at that level.
 *
 * If the delete empties a node, the node is removed from the tree,
 * continuing all the way the root if required.  The root is converted into
 * a leaf if all the nodes are emptied.
 */
773 774 775
int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
{
	int slot;
776
	struct tree_buffer *t;
777 778 779 780
	struct node *node;
	int nritems;

	while(1) {
781 782
		t = path->nodes[level];
		if (!t)
783
			break;
784
		node = &t->node;
785 786 787 788 789 790 791 792 793 794 795
		slot = path->slots[level];
		nritems = node->header.nritems;

		if (slot != nritems -1) {
			memmove(node->keys + slot, node->keys + slot + 1,
				sizeof(struct key) * (nritems - slot - 1));
			memmove(node->blockptrs + slot,
				node->blockptrs + slot + 1,
				sizeof(u64) * (nritems - slot - 1));
		}
		node->header.nritems--;
796
		write_tree_block(root, t);
797 798 799
		if (node->header.nritems != 0) {
			int tslot;
			if (slot == 0)
800 801
				fixup_low_keys(root, path, node->keys,
					       level + 1);
802
			tslot = path->slots[level+1];
803
			t->count++;
804 805 806 807
			push_node_left(root, path, level);
			if (node->header.nritems) {
				push_node_right(root, path, level);
			}
808 809
			if (node->header.nritems) {
				tree_block_release(root, t);
810
				break;
811 812
			}
			tree_block_release(root, t);
813
			path->slots[level+1] = tslot;
814
		}
815 816 817 818
		if (t == root->node) {
			/* just turn the root into a leaf and break */
			root->node->node.header.flags = node_level(0);
			write_tree_block(root, t);
819 820 821 822 823 824 825 826 827
			break;
		}
		level++;
		if (!path->nodes[level])
			BUG();
	}
	return 0;
}

C
Chris Mason 已提交
828 829 830 831
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
832
int del_item(struct ctree_root *root, struct ctree_path *path)
833 834 835
{
	int slot;
	struct leaf *leaf;
836
	struct tree_buffer *leaf_buf;
837 838 839
	int doff;
	int dsize;

840 841
	leaf_buf = path->nodes[0];
	leaf = &leaf_buf->leaf;
842
	slot = path->slots[0];
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	doff = leaf->items[slot].offset;
	dsize = leaf->items[slot].size;

	if (slot != leaf->header.nritems - 1) {
		int i;
		int data_end = leaf_data_end(leaf);
		memmove(leaf->data + data_end + dsize,
			leaf->data + data_end,
			doff - data_end);
		for (i = slot + 1; i < leaf->header.nritems; i++)
			leaf->items[i].offset += dsize;
		memmove(leaf->items + slot, leaf->items + slot + 1,
			sizeof(struct item) *
			(leaf->header.nritems - slot - 1));
	}
	leaf->header.nritems -= 1;
C
Chris Mason 已提交
859
	/* delete the leaf if we've emptied it */
860
	if (leaf->header.nritems == 0) {
861 862 863 864
		if (leaf_buf == root->node) {
			leaf->header.flags = node_level(0);
			write_tree_block(root, leaf_buf);
		} else
865
			del_ptr(root, path, 1);
866 867
	} else {
		if (slot == 0)
868 869
			fixup_low_keys(root, path, &leaf->items[0].key, 1);
		write_tree_block(root, leaf_buf);
C
Chris Mason 已提交
870
		/* delete the leaf if it is mostly empty */
871 872 873 874 875 876
		if (leaf_space_used(leaf, 0, leaf->header.nritems) <
		    LEAF_DATA_SIZE / 4) {
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
877
			slot = path->slots[1];
878
			leaf_buf->count++;
879
			push_leaf_left(root, path, 1);
880
			if (leaf->header.nritems == 0) {
881 882
				path->slots[1] = slot;
				del_ptr(root, path, 1);
883
			}
884
			tree_block_release(root, leaf_buf);
885 886 887 888 889
		}
	}
	return 0;
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
int next_leaf(struct ctree_root *root, struct ctree_path *path)
{
	int slot;
	int level = 1;
	u64 blocknr;
	struct tree_buffer *c;
	struct tree_buffer *next;

	while(level < MAX_LEVEL) {
		if (!path->nodes[level])
			return -1;
		slot = path->slots[level] + 1;
		c = path->nodes[level];
		if (slot >= c->node.header.nritems) {
			level++;
			continue;
		}
		blocknr = c->node.blockptrs[slot];
		next = read_tree_block(root, blocknr);
		break;
	}
	path->slots[level] = slot;
	while(1) {
		level--;
		c = path->nodes[level];
		tree_block_release(root, c);
		path->nodes[level] = next;
		path->slots[level] = 0;
		if (!level)
			break;
		next = read_tree_block(root, next->node.blockptrs[0]);
	}
	return 0;
}

int alloc_extent(struct ctree_root *root, u64 num_blocks, u64 search_start,
		 u64 search_end, u64 owner, struct key *ins)
{
	struct ctree_path path;
	struct key *key;
	int ret;
	u64 hole_size = 0;
	int slot = 0;
	u64 last_block;
	int start_found = 0;
	struct leaf *l;
	struct extent_item extent_item;

	init_path(&path);
	ins->objectid = search_start;
	ins->offset = 0;
	ins->flags = 0;

	ret = search_slot(root, ins, &path);
	while (1) {
		l = &path.nodes[0]->leaf;
		slot = path.slots[0];
		if (!l) {
			// FIXME allocate root
		}
		if (slot >= l->header.nritems) {
			ret = next_leaf(root, &path);
			if (ret == 0)
				continue;
			if (!start_found) {
				ins->objectid = search_start;
				ins->offset = num_blocks;
				hole_size = search_end - search_start;
				goto insert;
			}
			ins->objectid = last_block;
			ins->offset = num_blocks;
			hole_size = search_end - last_block;
			goto insert;
		}
		key = &l->items[slot].key;
		if (start_found) {
			hole_size = key->objectid - last_block;
			if (hole_size > num_blocks) {
				ins->objectid = last_block;
				ins->offset = num_blocks;
				goto insert;
			}
		} else
			start_found = 1;
		last_block = key->objectid + key->offset;
		path.slots[0]++;
		printf("last block is not %lu\n", last_block);
	}
	// FIXME -ENOSPC
insert:
	extent_item.refs = 1;
	extent_item.owner = owner;
	ret = insert_item(root, ins, &extent_item, sizeof(extent_item));
	return ret;
}

static int refill_alloc_extent(struct ctree_root *root)
{
	struct alloc_extent *ae = root->alloc_extent;
	struct key key;
	int ret;
	int min_blocks = MAX_LEVEL * 2;

	printf("refill alloc root %p, numused %lu total %lu\n", root, ae->num_used, ae->num_blocks);
	if (ae->num_blocks > ae->num_used && ae->num_blocks - ae->num_used >
	    min_blocks)
		return 0;
	ae = root->reserve_extent;
	if (ae->num_blocks > ae->num_used) {
		if (root->alloc_extent->num_blocks == 0) {
			/* we should swap reserve/alloc_extent when alloc
			 * fills up
			 */
			BUG();
		}
		if (ae->num_blocks - ae->num_used < min_blocks)
			BUG();
		return 0;
	}
	// FIXME, this recurses
	ret = alloc_extent(root->extent_root,
			   min_blocks * 2, 0, (unsigned long)-1, 0, &key);
	ae->blocknr = key.objectid;
	ae->num_blocks = key.offset;
	ae->num_used = 0;
	return ret;
}

1019 1020 1021 1022 1023
void print_leaf(struct leaf *l)
{
	int i;
	int nr = l->header.nritems;
	struct item *item;
1024
	printf("leaf %lu total ptrs %d free space %d\n", l->header.blocknr, nr,
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	       leaf_free_space(l));
	fflush(stdout);
	for (i = 0 ; i < nr ; i++) {
		item = l->items + i;
		printf("\titem %d key (%lu %u %lu) itemoff %d itemsize %d\n",
			i,
			item->key.objectid, item->key.flags, item->key.offset,
			item->offset, item->size);
		fflush(stdout);
		printf("\t\titem data %.*s\n", item->size, l->data+item->offset);
		fflush(stdout);
	}
}
1038
void print_tree(struct ctree_root *root, struct tree_buffer *t)
1039 1040 1041
{
	int i;
	int nr;
1042
	struct node *c;
1043

1044
	if (!t)
1045
		return;
1046
	c = &t->node;
1047
	nr = c->header.nritems;
1048 1049
	if (c->header.blocknr != t->blocknr)
		BUG();
1050 1051 1052 1053
	if (is_leaf(c->header.flags)) {
		print_leaf((struct leaf *)c);
		return;
	}
1054
	printf("node %lu level %d total ptrs %d free spc %lu\n", t->blocknr,
1055 1056 1057 1058
	        node_level(c->header.flags), c->header.nritems,
		NODEPTRS_PER_BLOCK - c->header.nritems);
	fflush(stdout);
	for (i = 0; i < nr; i++) {
1059
		printf("\tkey %d (%lu %u %lu) block %lu\n",
1060 1061 1062 1063 1064 1065
		       i,
		       c->keys[i].objectid, c->keys[i].flags, c->keys[i].offset,
		       c->blockptrs[i]);
		fflush(stdout);
	}
	for (i = 0; i < nr; i++) {
1066 1067 1068
		struct tree_buffer *next_buf = read_tree_block(root,
							    c->blockptrs[i]);
		struct node *next = &next_buf->node;
1069 1070 1071 1072 1073 1074
		if (is_leaf(next->header.flags) &&
		    node_level(c->header.flags) != 1)
			BUG();
		if (node_level(next->header.flags) !=
			node_level(c->header.flags) - 1)
			BUG();
1075 1076
		print_tree(root, next_buf);
		tree_block_release(root, next_buf);
1077 1078 1079 1080 1081 1082
	}

}

/* for testing only */
int next_key(int i, int max_key) {
1083 1084
	// return rand() % max_key;
	return i;
1085 1086 1087
}

int main() {
1088
	struct ctree_root *root;
1089
	struct key ins;
1090
	struct key last = { (u64)-1, 0, 0};
1091 1092 1093 1094
	char *buf;
	int i;
	int num;
	int ret;
1095
	int run_size = 256;
1096 1097 1098 1099
	int max_key = 100000000;
	int tree_size = 0;
	struct ctree_path path;

1100 1101 1102 1103
	radix_tree_init();


	root = open_ctree("dbfile");
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	srand(55);
	for (i = 0; i < run_size; i++) {
		buf = malloc(64);
		num = next_key(i, max_key);
		// num = i;
		sprintf(buf, "string-%d", num);
		// printf("insert %d\n", num);
		ins.objectid = num;
		ins.offset = 0;
		ins.flags = 0;
1115
		printf("insert %d\n", i);
1116
		ret = insert_item(root, &ins, buf, strlen(buf));
1117 1118
		if (!ret)
			tree_size++;
1119
		printf("done insert %d\n", i);
1120
	}
1121 1122 1123 1124 1125 1126 1127 1128
	printf("root used: %lu\n", root->alloc_extent->num_used);
	printf("root tree\n");
	print_tree(root, root->node);
	printf("map tree\n");
	printf("map used: %lu\n", root->extent_root->alloc_extent->num_used);
	print_tree(root->extent_root, root->extent_root->node);
	exit(1);

1129 1130 1131
	close_ctree(root);
	root = open_ctree("dbfile");
	printf("starting search\n");
1132 1133 1134 1135 1136
	srand(55);
	for (i = 0; i < run_size; i++) {
		num = next_key(i, max_key);
		ins.objectid = num;
		init_path(&path);
1137
		ret = search_slot(root, &ins, &path);
1138
		if (ret) {
1139
			print_tree(root, root->node);
1140 1141 1142
			printf("unable to find %d\n", num);
			exit(1);
		}
1143 1144 1145 1146 1147 1148 1149 1150 1151
		release_path(root, &path);
	}
	close_ctree(root);
	root = open_ctree("dbfile");
	printf("node %p level %d total ptrs %d free spc %lu\n", root->node,
	        node_level(root->node->node.header.flags),
		root->node->node.header.nritems,
		NODEPTRS_PER_BLOCK - root->node->node.header.nritems);
	printf("all searches good, deleting some items\n");
1152 1153
	i = 0;
	srand(55);
1154 1155 1156 1157
	for (i = 0 ; i < run_size/4; i++) {
		num = next_key(i, max_key);
		ins.objectid = num;
		init_path(&path);
1158
		ret = search_slot(root, &ins, &path);
1159 1160
		if (ret)
			continue;
1161
		ret = del_item(root, &path);
1162 1163
		if (ret != 0)
			BUG();
1164
		release_path(root, &path);
1165 1166 1167
		tree_size--;
	}
	srand(128);
1168
	for (i = 0; i < run_size; i++) {
1169
		buf = malloc(64);
1170
		num = next_key(i, max_key);
1171
		sprintf(buf, "string-%d", num);
1172
		ins.objectid = num;
1173
		ret = insert_item(root, &ins, buf, strlen(buf));
1174 1175 1176
		if (!ret)
			tree_size++;
	}
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	close_ctree(root);
	root = open_ctree("dbfile");
	printf("starting search2\n");
	srand(128);
	for (i = 0; i < run_size; i++) {
		num = next_key(i, max_key);
		ins.objectid = num;
		init_path(&path);
		ret = search_slot(root, &ins, &path);
		if (ret) {
			print_tree(root, root->node);
			printf("unable to find %d\n", num);
			exit(1);
		}
		release_path(root, &path);
	}
	printf("starting big long delete run\n");
	while(root->node && root->node->node.header.nritems > 0) {
1195 1196 1197 1198
		struct leaf *leaf;
		int slot;
		ins.objectid = (u64)-1;
		init_path(&path);
1199
		ret = search_slot(root, &ins, &path);
1200 1201 1202
		if (ret == 0)
			BUG();

1203
		leaf = &path.nodes[0]->leaf;
1204 1205 1206 1207 1208 1209
		slot = path.slots[0];
		if (slot != leaf->header.nritems)
			BUG();
		while(path.slots[0] > 0) {
			path.slots[0] -= 1;
			slot = path.slots[0];
1210
			leaf = &path.nodes[0]->leaf;
1211 1212 1213 1214

			if (comp_keys(&last, &leaf->items[slot].key) <= 0)
				BUG();
			memcpy(&last, &leaf->items[slot].key, sizeof(last));
1215 1216 1217
			ret = del_item(root, &path);
			if (ret != 0) {
				printf("del_item returned %d\n", ret);
1218
				BUG();
1219
			}
1220 1221
			tree_size--;
		}
1222
		release_path(root, &path);
1223
	}
1224
	close_ctree(root);
1225
	printf("tree size is now %d\n", tree_size);
1226 1227
	return 0;
}