topology.c 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * arch/arm/kernel/topology.c
 *
 * Copyright (C) 2011 Linaro Limited.
 * Written by: Vincent Guittot
 *
 * based on arch/sh/kernel/topology.c
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 */

#include <linux/cpu.h>
15
#include <linux/cpufreq.h>
16
#include <linux/cpumask.h>
17
#include <linux/export.h>
18 19 20 21
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
22
#include <linux/of.h>
23
#include <linux/sched.h>
24
#include <linux/slab.h>
25 26 27 28

#include <asm/cputype.h>
#include <asm/topology.h>

29
/*
30
 * cpu capacity scale management
31 32 33
 */

/*
34
 * cpu capacity table
35 36
 * This per cpu data structure describes the relative capacity of each core.
 * On a heteregenous system, cores don't have the same computation capacity
37 38 39 40 41 42
 * and we reflect that difference in the cpu_capacity field so the scheduler
 * can take this difference into account during load balance. A per cpu
 * structure is preferred because each CPU updates its own cpu_capacity field
 * during the load balance except for idle cores. One idle core is selected
 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
 * updated during this sequence.
43
 */
44
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
45

46
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
47 48 49 50
{
	return per_cpu(cpu_scale, cpu);
}

51
static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
52
{
53
	per_cpu(cpu_scale, cpu) = capacity;
54 55
}

56 57 58 59 60 61 62 63 64 65
#ifdef CONFIG_OF
struct cpu_efficiency {
	const char *compatible;
	unsigned long efficiency;
};

/*
 * Table of relative efficiency of each processors
 * The efficiency value must fit in 20bit and the final
 * cpu_scale value must be in the range
66
 *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
67 68 69
 * in order to return at most 1 when DIV_ROUND_CLOSEST
 * is used to compute the capacity of a CPU.
 * Processors that are not defined in the table,
70
 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
71
 */
72
static const struct cpu_efficiency table_efficiency[] = {
73 74 75 76 77
	{"arm,cortex-a15", 3891},
	{"arm,cortex-a7",  2048},
	{NULL, },
};

78
static unsigned long *__cpu_capacity;
79
#define cpu_capacity(cpu)	__cpu_capacity[cpu]
80

81
static unsigned long middle_capacity = 1;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static bool cap_from_dt = true;
static u32 *raw_capacity;
static bool cap_parsing_failed;
static u32 capacity_scale;

static int __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
{
	int ret = 1;
	u32 cpu_capacity;

	if (cap_parsing_failed)
		return !ret;

	ret = of_property_read_u32(cpu_node,
				   "capacity-dmips-mhz",
				   &cpu_capacity);
	if (!ret) {
		if (!raw_capacity) {
			raw_capacity = kcalloc(num_possible_cpus(),
					       sizeof(*raw_capacity),
					       GFP_KERNEL);
			if (!raw_capacity) {
				pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
				cap_parsing_failed = true;
				return !ret;
			}
		}
		capacity_scale = max(cpu_capacity, capacity_scale);
		raw_capacity[cpu] = cpu_capacity;
		pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
			cpu_node->full_name, raw_capacity[cpu]);
	} else {
		if (raw_capacity) {
			pr_err("cpu_capacity: missing %s raw capacity\n",
				cpu_node->full_name);
			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
		}
		cap_parsing_failed = true;
		kfree(raw_capacity);
	}

	return !ret;
}

static void normalize_cpu_capacity(void)
{
	u64 capacity;
	int cpu;

	if (!raw_capacity || cap_parsing_failed)
		return;

	pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
	for_each_possible_cpu(cpu) {
		capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
			/ capacity_scale;
		set_capacity_scale(cpu, capacity);
		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
			cpu, arch_scale_cpu_capacity(NULL, cpu));
	}
}

#ifdef CONFIG_CPU_FREQ
static cpumask_var_t cpus_to_visit;
static bool cap_parsing_done;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);

static int
init_cpu_capacity_callback(struct notifier_block *nb,
			   unsigned long val,
			   void *data)
{
	struct cpufreq_policy *policy = data;
	int cpu;

	if (cap_parsing_failed || cap_parsing_done)
		return 0;

	switch (val) {
	case CPUFREQ_NOTIFY:
		pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
				cpumask_pr_args(policy->related_cpus),
				cpumask_pr_args(cpus_to_visit));
		cpumask_andnot(cpus_to_visit,
			       cpus_to_visit,
			       policy->related_cpus);
		for_each_cpu(cpu, policy->related_cpus) {
			raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
					    policy->cpuinfo.max_freq / 1000UL;
			capacity_scale = max(raw_capacity[cpu], capacity_scale);
		}
		if (cpumask_empty(cpus_to_visit)) {
			normalize_cpu_capacity();
			kfree(raw_capacity);
			pr_debug("cpu_capacity: parsing done\n");
			cap_parsing_done = true;
			schedule_work(&parsing_done_work);
		}
	}
	return 0;
}

static struct notifier_block init_cpu_capacity_notifier = {
	.notifier_call = init_cpu_capacity_callback,
};

static int __init register_cpufreq_notifier(void)
{
	if (cap_parsing_failed)
		return -EINVAL;

	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
		pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
		return -ENOMEM;
	}
	cpumask_copy(cpus_to_visit, cpu_possible_mask);

	return cpufreq_register_notifier(&init_cpu_capacity_notifier,
					 CPUFREQ_POLICY_NOTIFIER);
}
core_initcall(register_cpufreq_notifier);

static void parsing_done_workfn(struct work_struct *work)
{
	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
					 CPUFREQ_POLICY_NOTIFIER);
}

#else
static int __init free_raw_capacity(void)
{
	kfree(raw_capacity);

	return 0;
}
core_initcall(free_raw_capacity);
#endif
220 221 222 223 224

/*
 * Iterate all CPUs' descriptor in DT and compute the efficiency
 * (as per table_efficiency). Also calculate a middle efficiency
 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
225 226 227
 * This is later used to scale the cpu_capacity field such that an
 * 'average' CPU is of middle capacity. Also see the comments near
 * table_efficiency[] and update_cpu_capacity().
228 229 230
 */
static void __init parse_dt_topology(void)
{
231
	const struct cpu_efficiency *cpu_eff;
232
	struct device_node *cn = NULL;
233
	unsigned long min_capacity = ULONG_MAX;
234 235
	unsigned long max_capacity = 0;
	unsigned long capacity = 0;
236
	int cpu = 0;
237

238 239
	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
				 GFP_NOWAIT);
240

241 242 243 244 245 246
	cn = of_find_node_by_path("/cpus");
	if (!cn) {
		pr_err("No CPU information found in DT\n");
		return;
	}

247 248
	for_each_possible_cpu(cpu) {
		const u32 *rate;
249 250
		int len;

251 252 253 254 255 256
		/* too early to use cpu->of_node */
		cn = of_get_cpu_node(cpu, NULL);
		if (!cn) {
			pr_err("missing device node for CPU %d\n", cpu);
			continue;
		}
257

258 259 260 261 262 263 264
		if (parse_cpu_capacity(cn, cpu)) {
			of_node_put(cn);
			continue;
		}

		cap_from_dt = false;

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
			if (of_device_is_compatible(cn, cpu_eff->compatible))
				break;

		if (cpu_eff->compatible == NULL)
			continue;

		rate = of_get_property(cn, "clock-frequency", &len);
		if (!rate || len != 4) {
			pr_err("%s missing clock-frequency property\n",
				cn->full_name);
			continue;
		}

		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;

		/* Save min capacity of the system */
		if (capacity < min_capacity)
			min_capacity = capacity;

		/* Save max capacity of the system */
		if (capacity > max_capacity)
			max_capacity = capacity;

289
		cpu_capacity(cpu) = capacity;
290 291 292 293 294 295
	}

	/* If min and max capacities are equals, we bypass the update of the
	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
	 * compute a middle_capacity factor that will ensure that the capacity
	 * of an 'average' CPU of the system will be as close as possible to
296
	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
297 298
	 * constraint explained near table_efficiency[].
	 */
299
	if (4*max_capacity < (3*(max_capacity + min_capacity)))
300
		middle_capacity = (min_capacity + max_capacity)
301
				>> (SCHED_CAPACITY_SHIFT+1);
302 303
	else
		middle_capacity = ((max_capacity / 3)
304
				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
305

306 307
	if (cap_from_dt && !cap_parsing_failed)
		normalize_cpu_capacity();
308 309 310 311 312 313 314
}

/*
 * Look for a customed capacity of a CPU in the cpu_capacity table during the
 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
 * function returns directly for SMP system.
 */
315
static void update_cpu_capacity(unsigned int cpu)
316
{
317
	if (!cpu_capacity(cpu) || cap_from_dt)
318 319
		return;

320
	set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
321

R
Russell King 已提交
322
	pr_info("CPU%u: update cpu_capacity %lu\n",
323
		cpu, arch_scale_cpu_capacity(NULL, cpu));
324 325 326 327
}

#else
static inline void parse_dt_topology(void) {}
328
static inline void update_cpu_capacity(unsigned int cpuid) {}
329 330
#endif

331
 /*
332 333
 * cpu topology table
 */
334
struct cputopo_arm cpu_topology[NR_CPUS];
335
EXPORT_SYMBOL_GPL(cpu_topology);
336

337
const struct cpumask *cpu_coregroup_mask(int cpu)
338 339 340 341
{
	return &cpu_topology[cpu].core_sibling;
}

342 343 344 345 346 347 348 349 350
/*
 * The current assumption is that we can power gate each core independently.
 * This will be superseded by DT binding once available.
 */
const struct cpumask *cpu_corepower_mask(int cpu)
{
	return &cpu_topology[cpu].thread_sibling;
}

351
static void update_siblings_masks(unsigned int cpuid)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
{
	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
	int cpu;

	/* update core and thread sibling masks */
	for_each_possible_cpu(cpu) {
		cpu_topo = &cpu_topology[cpu];

		if (cpuid_topo->socket_id != cpu_topo->socket_id)
			continue;

		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
		if (cpu != cpuid)
			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);

		if (cpuid_topo->core_id != cpu_topo->core_id)
			continue;

		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
		if (cpu != cpuid)
			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
	}
	smp_wmb();
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/*
 * store_cpu_topology is called at boot when only one cpu is running
 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
 * which prevents simultaneous write access to cpu_topology array
 */
void store_cpu_topology(unsigned int cpuid)
{
	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
	unsigned int mpidr;

	/* If the cpu topology has been already set, just return */
	if (cpuid_topo->core_id != -1)
		return;

	mpidr = read_cpuid_mpidr();

	/* create cpu topology mapping */
	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
		/*
		 * This is a multiprocessor system
		 * multiprocessor format & multiprocessor mode field are set
		 */

		if (mpidr & MPIDR_MT_BITMASK) {
			/* core performance interdependency */
402 403 404
			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
405 406 407
		} else {
			/* largely independent cores */
			cpuid_topo->thread_id = -1;
408 409
			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
410 411 412 413 414 415 416 417 418 419 420 421
		}
	} else {
		/*
		 * This is an uniprocessor system
		 * we are in multiprocessor format but uniprocessor system
		 * or in the old uniprocessor format
		 */
		cpuid_topo->thread_id = -1;
		cpuid_topo->core_id = 0;
		cpuid_topo->socket_id = -1;
	}

422
	update_siblings_masks(cpuid);
423

424
	update_cpu_capacity(cpuid);
425

R
Russell King 已提交
426
	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
427 428 429 430 431
		cpuid, cpu_topology[cpuid].thread_id,
		cpu_topology[cpuid].core_id,
		cpu_topology[cpuid].socket_id, mpidr);
}

G
Guenter Roeck 已提交
432
static inline int cpu_corepower_flags(void)
433 434 435 436 437 438 439 440 441 442 443 444 445
{
	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
}

static struct sched_domain_topology_level arm_topology[] = {
#ifdef CONFIG_SCHED_MC
	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

446 447 448 449
/*
 * init_cpu_topology is called at boot when only one cpu is running
 * which prevent simultaneous write access to cpu_topology array
 */
450
void __init init_cpu_topology(void)
451 452 453
{
	unsigned int cpu;

454
	/* init core mask and capacity */
455 456 457 458 459 460 461 462 463 464
	for_each_possible_cpu(cpu) {
		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);

		cpu_topo->thread_id = -1;
		cpu_topo->core_id =  -1;
		cpu_topo->socket_id = -1;
		cpumask_clear(&cpu_topo->core_sibling);
		cpumask_clear(&cpu_topo->thread_sibling);
	}
	smp_wmb();
465 466

	parse_dt_topology();
467 468 469

	/* Set scheduler topology descriptor */
	set_sched_topology(arm_topology);
470
}