esas2r_init.c 45.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 *  linux/drivers/scsi/esas2r/esas2r_init.c
 *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
 *
 *  Copyright (c) 2001-2013 ATTO Technology, Inc.
 *  (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * NO WARRANTY
 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
 * solely responsible for determining the appropriateness of using and
 * distributing the Program and assumes all risks associated with its
 * exercise of rights under this Agreement, including but not limited to
 * the risks and costs of program errors, damage to or loss of data,
 * programs or equipment, and unavailability or interruption of operations.
 *
 * DISCLAIMER OF LIABILITY
 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
 * USA.
 */

#include "esas2r.h"

static bool esas2r_initmem_alloc(struct esas2r_adapter *a,
				 struct esas2r_mem_desc *mem_desc,
				 u32 align)
{
	mem_desc->esas2r_param = mem_desc->size + align;
	mem_desc->virt_addr = NULL;
	mem_desc->phys_addr = 0;
	mem_desc->esas2r_data = dma_alloc_coherent(&a->pcid->dev,
						   (size_t)mem_desc->
						   esas2r_param,
						   (dma_addr_t *)&mem_desc->
						   phys_addr,
						   GFP_KERNEL);

	if (mem_desc->esas2r_data == NULL) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "failed to allocate %lu bytes of consistent memory!",
			   (long
			    unsigned
			    int)mem_desc->esas2r_param);
		return false;
	}

	mem_desc->virt_addr = PTR_ALIGN(mem_desc->esas2r_data, align);
	mem_desc->phys_addr = ALIGN(mem_desc->phys_addr, align);
	memset(mem_desc->virt_addr, 0, mem_desc->size);
	return true;
}

static void esas2r_initmem_free(struct esas2r_adapter *a,
				struct esas2r_mem_desc *mem_desc)
{
	if (mem_desc->virt_addr == NULL)
		return;

	/*
	 * Careful!  phys_addr and virt_addr may have been adjusted from the
	 * original allocation in order to return the desired alignment.  That
	 * means we have to use the original address (in esas2r_data) and size
	 * (esas2r_param) and calculate the original physical address based on
	 * the difference between the requested and actual allocation size.
	 */
	if (mem_desc->phys_addr) {
		int unalign = ((u8 *)mem_desc->virt_addr) -
			      ((u8 *)mem_desc->esas2r_data);

		dma_free_coherent(&a->pcid->dev,
				  (size_t)mem_desc->esas2r_param,
				  mem_desc->esas2r_data,
				  (dma_addr_t)(mem_desc->phys_addr - unalign));
	} else {
		kfree(mem_desc->esas2r_data);
	}

	mem_desc->virt_addr = NULL;
}

static bool alloc_vda_req(struct esas2r_adapter *a,
			  struct esas2r_request *rq)
{
	struct esas2r_mem_desc *memdesc = kzalloc(
		sizeof(struct esas2r_mem_desc), GFP_KERNEL);

	if (memdesc == NULL) {
		esas2r_hdebug("could not alloc mem for vda request memdesc\n");
		return false;
	}

	memdesc->size = sizeof(union atto_vda_req) +
			ESAS2R_DATA_BUF_LEN;

	if (!esas2r_initmem_alloc(a, memdesc, 256)) {
		esas2r_hdebug("could not alloc mem for vda request\n");
		kfree(memdesc);
		return false;
	}

	a->num_vrqs++;
	list_add(&memdesc->next_desc, &a->vrq_mds_head);

	rq->vrq_md = memdesc;
	rq->vrq = (union atto_vda_req *)memdesc->virt_addr;
	rq->vrq->scsi.handle = a->num_vrqs;

	return true;
}

static void esas2r_unmap_regions(struct esas2r_adapter *a)
{
	if (a->regs)
		iounmap((void __iomem *)a->regs);

	a->regs = NULL;

	pci_release_region(a->pcid, 2);

	if (a->data_window)
		iounmap((void __iomem *)a->data_window);

	a->data_window = NULL;

	pci_release_region(a->pcid, 0);
}

static int esas2r_map_regions(struct esas2r_adapter *a)
{
	int error;

	a->regs = NULL;
	a->data_window = NULL;

	error = pci_request_region(a->pcid, 2, a->name);
	if (error != 0) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "pci_request_region(2) failed, error %d",
			   error);

		return error;
	}

	a->regs = (void __force *)ioremap(pci_resource_start(a->pcid, 2),
					  pci_resource_len(a->pcid, 2));
	if (a->regs == NULL) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "ioremap failed for regs mem region\n");
		pci_release_region(a->pcid, 2);
		return -EFAULT;
	}

	error = pci_request_region(a->pcid, 0, a->name);
	if (error != 0) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "pci_request_region(2) failed, error %d",
			   error);
		esas2r_unmap_regions(a);
		return error;
	}

	a->data_window = (void __force *)ioremap(pci_resource_start(a->pcid,
								    0),
						 pci_resource_len(a->pcid, 0));
	if (a->data_window == NULL) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "ioremap failed for data_window mem region\n");
		esas2r_unmap_regions(a);
		return -EFAULT;
	}

	return 0;
}

static void esas2r_setup_interrupts(struct esas2r_adapter *a, int intr_mode)
{
	int i;

	/* Set up interrupt mode based on the requested value */
	switch (intr_mode) {
	case INTR_MODE_LEGACY:
use_legacy_interrupts:
		a->intr_mode = INTR_MODE_LEGACY;
		break;

	case INTR_MODE_MSI:
		i = pci_enable_msi(a->pcid);
		if (i != 0) {
			esas2r_log(ESAS2R_LOG_WARN,
				   "failed to enable MSI for adapter %d, "
				   "falling back to legacy interrupts "
				   "(err=%d)", a->index,
				   i);
			goto use_legacy_interrupts;
		}
		a->intr_mode = INTR_MODE_MSI;
219
		set_bit(AF2_MSI_ENABLED, &a->flags2);
220 221 222 223 224 225 226 227 228 229 230 231 232 233
		break;


	default:
		esas2r_log(ESAS2R_LOG_WARN,
			   "unknown interrupt_mode %d requested, "
			   "falling back to legacy interrupt",
			   interrupt_mode);
		goto use_legacy_interrupts;
	}
}

static void esas2r_claim_interrupts(struct esas2r_adapter *a)
{
234
	unsigned long flags = 0;
235 236 237 238 239

	if (a->intr_mode == INTR_MODE_LEGACY)
		flags |= IRQF_SHARED;

	esas2r_log(ESAS2R_LOG_INFO,
240
		   "esas2r_claim_interrupts irq=%d (%p, %s, %lx)",
241 242 243 244 245 246 247 248 249 250 251 252 253 254
		   a->pcid->irq, a, a->name, flags);

	if (request_irq(a->pcid->irq,
			(a->intr_mode ==
			 INTR_MODE_LEGACY) ? esas2r_interrupt :
			esas2r_msi_interrupt,
			flags,
			a->name,
			a)) {
		esas2r_log(ESAS2R_LOG_CRIT, "unable to request IRQ %02X",
			   a->pcid->irq);
		return;
	}

255
	set_bit(AF2_IRQ_CLAIMED, &a->flags2);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	esas2r_log(ESAS2R_LOG_INFO,
		   "claimed IRQ %d flags: 0x%lx",
		   a->pcid->irq, flags);
}

int esas2r_init_adapter(struct Scsi_Host *host, struct pci_dev *pcid,
			int index)
{
	struct esas2r_adapter *a;
	u64 bus_addr = 0;
	int i;
	void *next_uncached;
	struct esas2r_request *first_request, *last_request;

	if (index >= MAX_ADAPTERS) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "tried to init invalid adapter index %u!",
			   index);
		return 0;
	}

	if (esas2r_adapters[index]) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "tried to init existing adapter index %u!",
			   index);
		return 0;
	}

	a = (struct esas2r_adapter *)host->hostdata;
	memset(a, 0, sizeof(struct esas2r_adapter));
	a->pcid = pcid;
	a->host = host;

	if (sizeof(dma_addr_t) > 4) {
		const uint64_t required_mask = dma_get_required_mask
						       (&pcid->dev);
		if (required_mask > DMA_BIT_MASK(32)
		    && !pci_set_dma_mask(pcid, DMA_BIT_MASK(64))
		    && !pci_set_consistent_dma_mask(pcid,
						    DMA_BIT_MASK(64))) {
			esas2r_log_dev(ESAS2R_LOG_INFO,
				       &(a->pcid->dev),
				       "64-bit PCI addressing enabled\n");
		} else if (!pci_set_dma_mask(pcid, DMA_BIT_MASK(32))
			   && !pci_set_consistent_dma_mask(pcid,
							   DMA_BIT_MASK(32))) {
			esas2r_log_dev(ESAS2R_LOG_INFO,
				       &(a->pcid->dev),
				       "32-bit PCI addressing enabled\n");
		} else {
			esas2r_log(ESAS2R_LOG_CRIT,
				   "failed to set DMA mask");
			esas2r_kill_adapter(index);
			return 0;
		}
	} else {
		if (!pci_set_dma_mask(pcid, DMA_BIT_MASK(32))
		    && !pci_set_consistent_dma_mask(pcid,
						    DMA_BIT_MASK(32))) {
			esas2r_log_dev(ESAS2R_LOG_INFO,
				       &(a->pcid->dev),
				       "32-bit PCI addressing enabled\n");
		} else {
			esas2r_log(ESAS2R_LOG_CRIT,
				   "failed to set DMA mask");
			esas2r_kill_adapter(index);
			return 0;
		}
	}
	esas2r_adapters[index] = a;
	sprintf(a->name, ESAS2R_DRVR_NAME "_%02d", index);
	esas2r_debug("new adapter %p, name %s", a, a->name);
	spin_lock_init(&a->request_lock);
	spin_lock_init(&a->fw_event_lock);
330
	mutex_init(&a->fm_api_mutex);
331
	mutex_init(&a->fs_api_mutex);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	sema_init(&a->nvram_semaphore, 1);

	esas2r_fw_event_off(a);
	snprintf(a->fw_event_q_name, ESAS2R_KOBJ_NAME_LEN, "esas2r/%d",
		 a->index);
	a->fw_event_q = create_singlethread_workqueue(a->fw_event_q_name);

	init_waitqueue_head(&a->buffered_ioctl_waiter);
	init_waitqueue_head(&a->nvram_waiter);
	init_waitqueue_head(&a->fm_api_waiter);
	init_waitqueue_head(&a->fs_api_waiter);
	init_waitqueue_head(&a->vda_waiter);

	INIT_LIST_HEAD(&a->general_req.req_list);
	INIT_LIST_HEAD(&a->active_list);
	INIT_LIST_HEAD(&a->defer_list);
	INIT_LIST_HEAD(&a->free_sg_list_head);
	INIT_LIST_HEAD(&a->avail_request);
	INIT_LIST_HEAD(&a->vrq_mds_head);
	INIT_LIST_HEAD(&a->fw_event_list);

	first_request = (struct esas2r_request *)((u8 *)(a + 1));

	for (last_request = first_request, i = 1; i < num_requests;
	     last_request++, i++) {
		INIT_LIST_HEAD(&last_request->req_list);
		list_add_tail(&last_request->comp_list, &a->avail_request);
		if (!alloc_vda_req(a, last_request)) {
			esas2r_log(ESAS2R_LOG_CRIT,
				   "failed to allocate a VDA request!");
			esas2r_kill_adapter(index);
			return 0;
		}
	}

	esas2r_debug("requests: %p to %p (%d, %d)", first_request,
		     last_request,
		     sizeof(*first_request),
		     num_requests);

	if (esas2r_map_regions(a) != 0) {
		esas2r_log(ESAS2R_LOG_CRIT, "could not map PCI regions!");
		esas2r_kill_adapter(index);
		return 0;
	}

	a->index = index;

	/* interrupts will be disabled until we are done with init */
	atomic_inc(&a->dis_ints_cnt);
	atomic_inc(&a->disable_cnt);
383 384 385 386
	set_bit(AF_CHPRST_PENDING, &a->flags);
	set_bit(AF_DISC_PENDING, &a->flags);
	set_bit(AF_FIRST_INIT, &a->flags);
	set_bit(AF_LEGACY_SGE_MODE, &a->flags);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

	a->init_msg = ESAS2R_INIT_MSG_START;
	a->max_vdareq_size = 128;
	a->build_sgl = esas2r_build_sg_list_sge;

	esas2r_setup_interrupts(a, interrupt_mode);

	a->uncached_size = esas2r_get_uncached_size(a);
	a->uncached = dma_alloc_coherent(&pcid->dev,
					 (size_t)a->uncached_size,
					 (dma_addr_t *)&bus_addr,
					 GFP_KERNEL);
	if (a->uncached == NULL) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "failed to allocate %d bytes of consistent memory!",
			   a->uncached_size);
		esas2r_kill_adapter(index);
		return 0;
	}

	a->uncached_phys = bus_addr;

	esas2r_debug("%d bytes uncached memory allocated @ %p (%x:%x)",
		     a->uncached_size,
		     a->uncached,
		     upper_32_bits(bus_addr),
		     lower_32_bits(bus_addr));
	memset(a->uncached, 0, a->uncached_size);
	next_uncached = a->uncached;

	if (!esas2r_init_adapter_struct(a,
					&next_uncached)) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "failed to initialize adapter structure (2)!");
		esas2r_kill_adapter(index);
		return 0;
	}

	tasklet_init(&a->tasklet,
		     esas2r_adapter_tasklet,
		     (unsigned long)a);

	/*
	 * Disable chip interrupts to prevent spurious interrupts
	 * until we claim the IRQ.
	 */
	esas2r_disable_chip_interrupts(a);
	esas2r_check_adapter(a);

	if (!esas2r_init_adapter_hw(a, true))
		esas2r_log(ESAS2R_LOG_CRIT, "failed to initialize hardware!");
	else
		esas2r_debug("esas2r_init_adapter ok");

	esas2r_claim_interrupts(a);

443
	if (test_bit(AF2_IRQ_CLAIMED, &a->flags2))
444 445
		esas2r_enable_chip_interrupts(a);

446 447
	set_bit(AF2_INIT_DONE, &a->flags2);
	if (!test_bit(AF_DEGRADED_MODE, &a->flags))
448 449 450 451 452 453 454 455 456 457 458 459
		esas2r_kickoff_timer(a);
	esas2r_debug("esas2r_init_adapter done for %p (%d)",
		     a, a->disable_cnt);

	return 1;
}

static void esas2r_adapter_power_down(struct esas2r_adapter *a,
				      int power_management)
{
	struct esas2r_mem_desc *memdesc, *next;

460 461
	if ((test_bit(AF2_INIT_DONE, &a->flags2))
	    &&  (!test_bit(AF_DEGRADED_MODE, &a->flags))) {
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		if (!power_management) {
			del_timer_sync(&a->timer);
			tasklet_kill(&a->tasklet);
		}
		esas2r_power_down(a);

		/*
		 * There are versions of firmware that do not handle the sync
		 * cache command correctly.  Stall here to ensure that the
		 * cache is lazily flushed.
		 */
		mdelay(500);
		esas2r_debug("chip halted");
	}

	/* Remove sysfs binary files */
	if (a->sysfs_fw_created) {
		sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_fw);
		a->sysfs_fw_created = 0;
	}

	if (a->sysfs_fs_created) {
		sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_fs);
		a->sysfs_fs_created = 0;
	}

	if (a->sysfs_vda_created) {
		sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_vda);
		a->sysfs_vda_created = 0;
	}

	if (a->sysfs_hw_created) {
		sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_hw);
		a->sysfs_hw_created = 0;
	}

	if (a->sysfs_live_nvram_created) {
		sysfs_remove_bin_file(&a->host->shost_dev.kobj,
				      &bin_attr_live_nvram);
		a->sysfs_live_nvram_created = 0;
	}

	if (a->sysfs_default_nvram_created) {
		sysfs_remove_bin_file(&a->host->shost_dev.kobj,
				      &bin_attr_default_nvram);
		a->sysfs_default_nvram_created = 0;
	}

	/* Clean up interrupts */
511
	if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) {
512 513 514 515 516 517
		esas2r_log_dev(ESAS2R_LOG_INFO,
			       &(a->pcid->dev),
			       "free_irq(%d) called", a->pcid->irq);

		free_irq(a->pcid->irq, a);
		esas2r_debug("IRQ released");
518
		clear_bit(AF2_IRQ_CLAIMED, &a->flags2);
519 520
	}

521
	if (test_bit(AF2_MSI_ENABLED, &a->flags2)) {
522
		pci_disable_msi(a->pcid);
523
		clear_bit(AF2_MSI_ENABLED, &a->flags2);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
		esas2r_debug("MSI disabled");
	}

	if (a->inbound_list_md.virt_addr)
		esas2r_initmem_free(a, &a->inbound_list_md);

	if (a->outbound_list_md.virt_addr)
		esas2r_initmem_free(a, &a->outbound_list_md);

	list_for_each_entry_safe(memdesc, next, &a->free_sg_list_head,
				 next_desc) {
		esas2r_initmem_free(a, memdesc);
	}

	/* Following frees everything allocated via alloc_vda_req */
	list_for_each_entry_safe(memdesc, next, &a->vrq_mds_head, next_desc) {
		esas2r_initmem_free(a, memdesc);
		list_del(&memdesc->next_desc);
		kfree(memdesc);
	}

	kfree(a->first_ae_req);
	a->first_ae_req = NULL;

	kfree(a->sg_list_mds);
	a->sg_list_mds = NULL;

	kfree(a->req_table);
	a->req_table = NULL;

	if (a->regs) {
		esas2r_unmap_regions(a);
		a->regs = NULL;
		a->data_window = NULL;
		esas2r_debug("regions unmapped");
	}
}

/* Release/free allocated resources for specified adapters. */
void esas2r_kill_adapter(int i)
{
	struct esas2r_adapter *a = esas2r_adapters[i];

	if (a) {
		unsigned long flags;
		struct workqueue_struct *wq;
		esas2r_debug("killing adapter %p [%d] ", a, i);
		esas2r_fw_event_off(a);
		esas2r_adapter_power_down(a, 0);
		if (esas2r_buffered_ioctl &&
		    (a->pcid == esas2r_buffered_ioctl_pcid)) {
			dma_free_coherent(&a->pcid->dev,
					  (size_t)esas2r_buffered_ioctl_size,
					  esas2r_buffered_ioctl,
					  esas2r_buffered_ioctl_addr);
			esas2r_buffered_ioctl = NULL;
		}

		if (a->vda_buffer) {
			dma_free_coherent(&a->pcid->dev,
					  (size_t)VDA_MAX_BUFFER_SIZE,
					  a->vda_buffer,
					  (dma_addr_t)a->ppvda_buffer);
			a->vda_buffer = NULL;
		}
		if (a->fs_api_buffer) {
			dma_free_coherent(&a->pcid->dev,
					  (size_t)a->fs_api_buffer_size,
					  a->fs_api_buffer,
					  (dma_addr_t)a->ppfs_api_buffer);
			a->fs_api_buffer = NULL;
		}

		kfree(a->local_atto_ioctl);
		a->local_atto_ioctl = NULL;

		spin_lock_irqsave(&a->fw_event_lock, flags);
		wq = a->fw_event_q;
		a->fw_event_q = NULL;
		spin_unlock_irqrestore(&a->fw_event_lock, flags);
		if (wq)
			destroy_workqueue(wq);

		if (a->uncached) {
			dma_free_coherent(&a->pcid->dev,
					  (size_t)a->uncached_size,
					  a->uncached,
					  (dma_addr_t)a->uncached_phys);
			a->uncached = NULL;
			esas2r_debug("uncached area freed");
		}

		esas2r_log_dev(ESAS2R_LOG_INFO,
			       &(a->pcid->dev),
			       "pci_disable_device() called.  msix_enabled: %d "
			       "msi_enabled: %d irq: %d pin: %d",
			       a->pcid->msix_enabled,
			       a->pcid->msi_enabled,
			       a->pcid->irq,
			       a->pcid->pin);

		esas2r_log_dev(ESAS2R_LOG_INFO,
			       &(a->pcid->dev),
			       "before pci_disable_device() enable_cnt: %d",
			       a->pcid->enable_cnt.counter);

		pci_disable_device(a->pcid);
		esas2r_log_dev(ESAS2R_LOG_INFO,
			       &(a->pcid->dev),
			       "after pci_disable_device() enable_cnt: %d",
			       a->pcid->enable_cnt.counter);

		esas2r_log_dev(ESAS2R_LOG_INFO,
			       &(a->pcid->dev),
			       "pci_set_drv_data(%p, NULL) called",
			       a->pcid);

		pci_set_drvdata(a->pcid, NULL);
		esas2r_adapters[i] = NULL;

644 645
		if (test_bit(AF2_INIT_DONE, &a->flags2)) {
			clear_bit(AF2_INIT_DONE, &a->flags2);
646

647
			set_bit(AF_DEGRADED_MODE, &a->flags);
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

			esas2r_log_dev(ESAS2R_LOG_INFO,
				       &(a->host->shost_gendev),
				       "scsi_remove_host() called");

			scsi_remove_host(a->host);

			esas2r_log_dev(ESAS2R_LOG_INFO,
				       &(a->host->shost_gendev),
				       "scsi_host_put() called");

			scsi_host_put(a->host);
		}
	}
}

int esas2r_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct Scsi_Host *host = pci_get_drvdata(pdev);
	u32 device_state;
	struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata;

	esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "suspending adapter()");
	if (!a)
		return -ENODEV;

	esas2r_adapter_power_down(a, 1);
	device_state = pci_choose_state(pdev, state);
	esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
		       "pci_save_state() called");
	pci_save_state(pdev);
	esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
		       "pci_disable_device() called");
	pci_disable_device(pdev);
	esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
		       "pci_set_power_state() called");
	pci_set_power_state(pdev, device_state);
	esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "esas2r_suspend(): 0");
	return 0;
}

int esas2r_resume(struct pci_dev *pdev)
{
	struct Scsi_Host *host = pci_get_drvdata(pdev);
	struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata;
	int rez;

	esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "resuming adapter()");
	esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
		       "pci_set_power_state(PCI_D0) "
		       "called");
	pci_set_power_state(pdev, PCI_D0);
	esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
		       "pci_enable_wake(PCI_D0, 0) "
		       "called");
	pci_enable_wake(pdev, PCI_D0, 0);
	esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
		       "pci_restore_state() called");
	pci_restore_state(pdev);
	esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev),
		       "pci_enable_device() called");
	rez = pci_enable_device(pdev);
	pci_set_master(pdev);

	if (!a) {
		rez = -ENODEV;
		goto error_exit;
	}

	if (esas2r_map_regions(a) != 0) {
		esas2r_log(ESAS2R_LOG_CRIT, "could not re-map PCI regions!");
		rez = -ENOMEM;
		goto error_exit;
	}

	/* Set up interupt mode */
	esas2r_setup_interrupts(a, a->intr_mode);

	/*
	 * Disable chip interrupts to prevent spurious interrupts until we
	 * claim the IRQ.
	 */
	esas2r_disable_chip_interrupts(a);
	if (!esas2r_power_up(a, true)) {
		esas2r_debug("yikes, esas2r_power_up failed");
		rez = -ENOMEM;
		goto error_exit;
	}

	esas2r_claim_interrupts(a);

739
	if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) {
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
		/*
		 * Now that system interrupt(s) are claimed, we can enable
		 * chip interrupts.
		 */
		esas2r_enable_chip_interrupts(a);
		esas2r_kickoff_timer(a);
	} else {
		esas2r_debug("yikes, unable to claim IRQ");
		esas2r_log(ESAS2R_LOG_CRIT, "could not re-claim IRQ!");
		rez = -ENOMEM;
		goto error_exit;
	}

error_exit:
	esas2r_log_dev(ESAS2R_LOG_CRIT, &(pdev->dev), "esas2r_resume(): %d",
		       rez);
	return rez;
}

bool esas2r_set_degraded_mode(struct esas2r_adapter *a, char *error_str)
{
761
	set_bit(AF_DEGRADED_MODE, &a->flags);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	esas2r_log(ESAS2R_LOG_CRIT,
		   "setting adapter to degraded mode: %s\n", error_str);
	return false;
}

u32 esas2r_get_uncached_size(struct esas2r_adapter *a)
{
	return sizeof(struct esas2r_sas_nvram)
	       + ALIGN(ESAS2R_DISC_BUF_LEN, 8)
	       + ALIGN(sizeof(u32), 8) /* outbound list copy pointer */
	       + 8
	       + (num_sg_lists * (u16)sgl_page_size)
	       + ALIGN((num_requests + num_ae_requests + 1 +
			ESAS2R_LIST_EXTRA) *
		       sizeof(struct esas2r_inbound_list_source_entry),
		       8)
	       + ALIGN((num_requests + num_ae_requests + 1 +
			ESAS2R_LIST_EXTRA) *
		       sizeof(struct atto_vda_ob_rsp), 8)
	       + 256; /* VDA request and buffer align */
}

static void esas2r_init_pci_cfg_space(struct esas2r_adapter *a)
{
	int pcie_cap_reg;

	pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP);
789
	if (pcie_cap_reg) {
790 791 792 793 794
		u16 devcontrol;

		pci_read_config_word(a->pcid, pcie_cap_reg + PCI_EXP_DEVCTL,
				     &devcontrol);

795 796
		if ((devcontrol & PCI_EXP_DEVCTL_READRQ) >
		     PCI_EXP_DEVCTL_READRQ_512B) {
797 798 799 800
			esas2r_log(ESAS2R_LOG_INFO,
				   "max read request size > 512B");

			devcontrol &= ~PCI_EXP_DEVCTL_READRQ;
801
			devcontrol |= PCI_EXP_DEVCTL_READRQ_512B;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
			pci_write_config_word(a->pcid,
					      pcie_cap_reg + PCI_EXP_DEVCTL,
					      devcontrol);
		}
	}
}

/*
 * Determine the organization of the uncached data area and
 * finish initializing the adapter structure
 */
bool esas2r_init_adapter_struct(struct esas2r_adapter *a,
				void **uncached_area)
{
	u32 i;
	u8 *high;
	struct esas2r_inbound_list_source_entry *element;
	struct esas2r_request *rq;
	struct esas2r_mem_desc *sgl;

	spin_lock_init(&a->sg_list_lock);
	spin_lock_init(&a->mem_lock);
	spin_lock_init(&a->queue_lock);

	a->targetdb_end = &a->targetdb[ESAS2R_MAX_TARGETS];

	if (!alloc_vda_req(a, &a->general_req)) {
		esas2r_hdebug(
			"failed to allocate a VDA request for the general req!");
		return false;
	}

	/* allocate requests for asynchronous events */
	a->first_ae_req =
		kzalloc(num_ae_requests * sizeof(struct esas2r_request),
			GFP_KERNEL);

	if (a->first_ae_req == NULL) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "failed to allocate memory for asynchronous events");
		return false;
	}

	/* allocate the S/G list memory descriptors */
	a->sg_list_mds = kzalloc(
		num_sg_lists * sizeof(struct esas2r_mem_desc), GFP_KERNEL);

	if (a->sg_list_mds == NULL) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "failed to allocate memory for s/g list descriptors");
		return false;
	}

	/* allocate the request table */
	a->req_table =
		kzalloc((num_requests + num_ae_requests +
			 1) * sizeof(struct esas2r_request *), GFP_KERNEL);

	if (a->req_table == NULL) {
		esas2r_log(ESAS2R_LOG_CRIT,
			   "failed to allocate memory for the request table");
		return false;
	}

	/* initialize PCI configuration space */
	esas2r_init_pci_cfg_space(a);

	/*
	 * the thunder_stream boards all have a serial flash part that has a
	 * different base address on the AHB bus.
	 */
	if ((a->pcid->subsystem_vendor == ATTO_VENDOR_ID)
	    && (a->pcid->subsystem_device & ATTO_SSDID_TBT))
		a->flags2 |= AF2_THUNDERBOLT;

877
	if (test_bit(AF2_THUNDERBOLT, &a->flags2))
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		a->flags2 |= AF2_SERIAL_FLASH;

	if (a->pcid->subsystem_device == ATTO_TLSH_1068)
		a->flags2 |= AF2_THUNDERLINK;

	/* Uncached Area */
	high = (u8 *)*uncached_area;

	/* initialize the scatter/gather table pages */

	for (i = 0, sgl = a->sg_list_mds; i < num_sg_lists; i++, sgl++) {
		sgl->size = sgl_page_size;

		list_add_tail(&sgl->next_desc, &a->free_sg_list_head);

		if (!esas2r_initmem_alloc(a, sgl, ESAS2R_SGL_ALIGN)) {
			/* Allow the driver to load if the minimum count met. */
			if (i < NUM_SGL_MIN)
				return false;
			break;
		}
	}

	/* compute the size of the lists */
	a->list_size = num_requests + ESAS2R_LIST_EXTRA;

	/* allocate the inbound list */
	a->inbound_list_md.size = a->list_size *
				  sizeof(struct
					 esas2r_inbound_list_source_entry);

	if (!esas2r_initmem_alloc(a, &a->inbound_list_md, ESAS2R_LIST_ALIGN)) {
		esas2r_hdebug("failed to allocate IB list");
		return false;
	}

	/* allocate the outbound list */
	a->outbound_list_md.size = a->list_size *
				   sizeof(struct atto_vda_ob_rsp);

	if (!esas2r_initmem_alloc(a, &a->outbound_list_md,
				  ESAS2R_LIST_ALIGN)) {
		esas2r_hdebug("failed to allocate IB list");
		return false;
	}

	/* allocate the NVRAM structure */
	a->nvram = (struct esas2r_sas_nvram *)high;
	high += sizeof(struct esas2r_sas_nvram);

	/* allocate the discovery buffer */
	a->disc_buffer = high;
	high += ESAS2R_DISC_BUF_LEN;
	high = PTR_ALIGN(high, 8);

	/* allocate the outbound list copy pointer */
	a->outbound_copy = (u32 volatile *)high;
	high += sizeof(u32);

937
	if (!test_bit(AF_NVR_VALID, &a->flags))
938 939 940 941 942 943
		esas2r_nvram_set_defaults(a);

	/* update the caller's uncached memory area pointer */
	*uncached_area = (void *)high;

	/* initialize the allocated memory */
944
	if (test_bit(AF_FIRST_INIT, &a->flags)) {
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
		esas2r_targ_db_initialize(a);

		/* prime parts of the inbound list */
		element =
			(struct esas2r_inbound_list_source_entry *)a->
			inbound_list_md.
			virt_addr;

		for (i = 0; i < a->list_size; i++) {
			element->address = 0;
			element->reserved = 0;
			element->length = cpu_to_le32(HWILSE_INTERFACE_F0
						      | (sizeof(union
								atto_vda_req)
							 /
							 sizeof(u32)));
			element++;
		}

		/* init the AE requests */
		for (rq = a->first_ae_req, i = 0; i < num_ae_requests; rq++,
		     i++) {
			INIT_LIST_HEAD(&rq->req_list);
			if (!alloc_vda_req(a, rq)) {
				esas2r_hdebug(
					"failed to allocate a VDA request!");
				return false;
			}

			esas2r_rq_init_request(rq, a);

			/* override the completion function */
			rq->comp_cb = esas2r_ae_complete;
		}
	}

	return true;
}

/* This code will verify that the chip is operational. */
bool esas2r_check_adapter(struct esas2r_adapter *a)
{
	u32 starttime;
	u32 doorbell;
	u64 ppaddr;
	u32 dw;

	/*
	 * if the chip reset detected flag is set, we can bypass a bunch of
	 * stuff.
	 */
996
	if (test_bit(AF_CHPRST_DETECTED, &a->flags))
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		goto skip_chip_reset;

	/*
	 * BEFORE WE DO ANYTHING, disable the chip interrupts!  the boot driver
	 * may have left them enabled or we may be recovering from a fault.
	 */
	esas2r_write_register_dword(a, MU_INT_MASK_OUT, ESAS2R_INT_DIS_MASK);
	esas2r_flush_register_dword(a, MU_INT_MASK_OUT);

	/*
	 * wait for the firmware to become ready by forcing an interrupt and
	 * waiting for a response.
	 */
	starttime = jiffies_to_msecs(jiffies);

	while (true) {
		esas2r_force_interrupt(a);
		doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
		if (doorbell == 0xFFFFFFFF) {
			/*
			 * Give the firmware up to two seconds to enable
			 * register access after a reset.
			 */
			if ((jiffies_to_msecs(jiffies) - starttime) > 2000)
				return esas2r_set_degraded_mode(a,
								"unable to access registers");
		} else if (doorbell & DRBL_FORCE_INT) {
			u32 ver = (doorbell & DRBL_FW_VER_MSK);

			/*
			 * This driver supports version 0 and version 1 of
			 * the API
			 */
			esas2r_write_register_dword(a, MU_DOORBELL_OUT,
						    doorbell);

			if (ver == DRBL_FW_VER_0) {
1034
				set_bit(AF_LEGACY_SGE_MODE, &a->flags);
1035 1036 1037 1038

				a->max_vdareq_size = 128;
				a->build_sgl = esas2r_build_sg_list_sge;
			} else if (ver == DRBL_FW_VER_1) {
1039
				clear_bit(AF_LEGACY_SGE_MODE, &a->flags);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

				a->max_vdareq_size = 1024;
				a->build_sgl = esas2r_build_sg_list_prd;
			} else {
				return esas2r_set_degraded_mode(a,
								"unknown firmware version");
			}
			break;
		}

		schedule_timeout_interruptible(msecs_to_jiffies(100));

		if ((jiffies_to_msecs(jiffies) - starttime) > 180000) {
			esas2r_hdebug("FW ready TMO");
			esas2r_bugon();

			return esas2r_set_degraded_mode(a,
							"firmware start has timed out");
		}
	}

	/* purge any asynchronous events since we will repost them later */
	esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_DOWN);
	starttime = jiffies_to_msecs(jiffies);

	while (true) {
		doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
		if (doorbell & DRBL_MSG_IFC_DOWN) {
			esas2r_write_register_dword(a, MU_DOORBELL_OUT,
						    doorbell);
			break;
		}

		schedule_timeout_interruptible(msecs_to_jiffies(50));

		if ((jiffies_to_msecs(jiffies) - starttime) > 3000) {
			esas2r_hdebug("timeout waiting for interface down");
			break;
		}
	}
skip_chip_reset:
	/*
	 * first things first, before we go changing any of these registers
	 * disable the communication lists.
	 */
	dw = esas2r_read_register_dword(a, MU_IN_LIST_CONFIG);
	dw &= ~MU_ILC_ENABLE;
	esas2r_write_register_dword(a, MU_IN_LIST_CONFIG, dw);
	dw = esas2r_read_register_dword(a, MU_OUT_LIST_CONFIG);
	dw &= ~MU_OLC_ENABLE;
	esas2r_write_register_dword(a, MU_OUT_LIST_CONFIG, dw);

	/* configure the communication list addresses */
	ppaddr = a->inbound_list_md.phys_addr;
	esas2r_write_register_dword(a, MU_IN_LIST_ADDR_LO,
				    lower_32_bits(ppaddr));
	esas2r_write_register_dword(a, MU_IN_LIST_ADDR_HI,
				    upper_32_bits(ppaddr));
	ppaddr = a->outbound_list_md.phys_addr;
	esas2r_write_register_dword(a, MU_OUT_LIST_ADDR_LO,
				    lower_32_bits(ppaddr));
	esas2r_write_register_dword(a, MU_OUT_LIST_ADDR_HI,
				    upper_32_bits(ppaddr));
	ppaddr = a->uncached_phys +
		 ((u8 *)a->outbound_copy - a->uncached);
	esas2r_write_register_dword(a, MU_OUT_LIST_COPY_PTR_LO,
				    lower_32_bits(ppaddr));
	esas2r_write_register_dword(a, MU_OUT_LIST_COPY_PTR_HI,
				    upper_32_bits(ppaddr));

	/* reset the read and write pointers */
	*a->outbound_copy =
		a->last_write =
			a->last_read = a->list_size - 1;
1114
	set_bit(AF_COMM_LIST_TOGGLE, &a->flags);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	esas2r_write_register_dword(a, MU_IN_LIST_WRITE, MU_ILW_TOGGLE |
				    a->last_write);
	esas2r_write_register_dword(a, MU_OUT_LIST_COPY, MU_OLC_TOGGLE |
				    a->last_write);
	esas2r_write_register_dword(a, MU_IN_LIST_READ, MU_ILR_TOGGLE |
				    a->last_write);
	esas2r_write_register_dword(a, MU_OUT_LIST_WRITE,
				    MU_OLW_TOGGLE | a->last_write);

	/* configure the interface select fields */
	dw = esas2r_read_register_dword(a, MU_IN_LIST_IFC_CONFIG);
	dw &= ~(MU_ILIC_LIST | MU_ILIC_DEST);
	esas2r_write_register_dword(a, MU_IN_LIST_IFC_CONFIG,
				    (dw | MU_ILIC_LIST_F0 | MU_ILIC_DEST_DDR));
	dw = esas2r_read_register_dword(a, MU_OUT_LIST_IFC_CONFIG);
	dw &= ~(MU_OLIC_LIST | MU_OLIC_SOURCE);
	esas2r_write_register_dword(a, MU_OUT_LIST_IFC_CONFIG,
				    (dw | MU_OLIC_LIST_F0 |
				     MU_OLIC_SOURCE_DDR));

	/* finish configuring the communication lists */
	dw = esas2r_read_register_dword(a, MU_IN_LIST_CONFIG);
	dw &= ~(MU_ILC_ENTRY_MASK | MU_ILC_NUMBER_MASK);
	dw |= MU_ILC_ENTRY_4_DW | MU_ILC_DYNAMIC_SRC
	      | (a->list_size << MU_ILC_NUMBER_SHIFT);
	esas2r_write_register_dword(a, MU_IN_LIST_CONFIG, dw);
	dw = esas2r_read_register_dword(a, MU_OUT_LIST_CONFIG);
	dw &= ~(MU_OLC_ENTRY_MASK | MU_OLC_NUMBER_MASK);
	dw |= MU_OLC_ENTRY_4_DW | (a->list_size << MU_OLC_NUMBER_SHIFT);
	esas2r_write_register_dword(a, MU_OUT_LIST_CONFIG, dw);

	/*
	 * notify the firmware that we're done setting up the communication
	 * list registers.  wait here until the firmware is done configuring
	 * its lists.  it will signal that it is done by enabling the lists.
	 */
	esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_INIT);
	starttime = jiffies_to_msecs(jiffies);

	while (true) {
		doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
		if (doorbell & DRBL_MSG_IFC_INIT) {
			esas2r_write_register_dword(a, MU_DOORBELL_OUT,
						    doorbell);
			break;
		}

		schedule_timeout_interruptible(msecs_to_jiffies(100));

		if ((jiffies_to_msecs(jiffies) - starttime) > 3000) {
			esas2r_hdebug(
				"timeout waiting for communication list init");
			esas2r_bugon();
			return esas2r_set_degraded_mode(a,
							"timeout waiting for communication list init");
		}
	}

	/*
	 * flag whether the firmware supports the power down doorbell.  we
	 * determine this by reading the inbound doorbell enable mask.
	 */
	doorbell = esas2r_read_register_dword(a, MU_DOORBELL_IN_ENB);
	if (doorbell & DRBL_POWER_DOWN)
1179
		set_bit(AF2_VDA_POWER_DOWN, &a->flags2);
1180
	else
1181
		clear_bit(AF2_VDA_POWER_DOWN, &a->flags2);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

	/*
	 * enable assertion of outbound queue and doorbell interrupts in the
	 * main interrupt cause register.
	 */
	esas2r_write_register_dword(a, MU_OUT_LIST_INT_MASK, MU_OLIS_MASK);
	esas2r_write_register_dword(a, MU_DOORBELL_OUT_ENB, DRBL_ENB_MASK);
	return true;
}

/* Process the initialization message just completed and format the next one. */
static bool esas2r_format_init_msg(struct esas2r_adapter *a,
				   struct esas2r_request *rq)
{
	u32 msg = a->init_msg;
	struct atto_vda_cfg_init *ci;

	a->init_msg = 0;

	switch (msg) {
	case ESAS2R_INIT_MSG_START:
	case ESAS2R_INIT_MSG_REINIT:
	{
		struct timeval now;
		do_gettimeofday(&now);
		esas2r_hdebug("CFG init");
		esas2r_build_cfg_req(a,
				     rq,
				     VDA_CFG_INIT,
				     0,
				     NULL);
		ci = (struct atto_vda_cfg_init *)&rq->vrq->cfg.data.init;
1214 1215
		ci->sgl_page_size = cpu_to_le32(sgl_page_size);
		ci->epoch_time = cpu_to_le32(now.tv_sec);
1216 1217 1218 1219 1220 1221 1222 1223 1224
		rq->flags |= RF_FAILURE_OK;
		a->init_msg = ESAS2R_INIT_MSG_INIT;
		break;
	}

	case ESAS2R_INIT_MSG_INIT:
		if (rq->req_stat == RS_SUCCESS) {
			u32 major;
			u32 minor;
1225
			u16 fw_release;
1226 1227 1228 1229

			a->fw_version = le16_to_cpu(
				rq->func_rsp.cfg_rsp.vda_version);
			a->fw_build = rq->func_rsp.cfg_rsp.fw_build;
1230 1231 1232 1233
			fw_release = le16_to_cpu(
				rq->func_rsp.cfg_rsp.fw_release);
			major = LOBYTE(fw_release);
			minor = HIBYTE(fw_release);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
			a->fw_version += (major << 16) + (minor << 24);
		} else {
			esas2r_hdebug("FAILED");
		}

		/*
		 * the 2.71 and earlier releases of R6xx firmware did not error
		 * unsupported config requests correctly.
		 */

1244 1245
		if ((test_bit(AF2_THUNDERBOLT, &a->flags2))
		    || (be32_to_cpu(a->fw_version) > 0x00524702)) {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
			esas2r_hdebug("CFG get init");
			esas2r_build_cfg_req(a,
					     rq,
					     VDA_CFG_GET_INIT2,
					     sizeof(struct atto_vda_cfg_init),
					     NULL);

			rq->vrq->cfg.sg_list_offset = offsetof(
				struct atto_vda_cfg_req,
				data.sge);
			rq->vrq->cfg.data.prde.ctl_len =
				cpu_to_le32(sizeof(struct atto_vda_cfg_init));
			rq->vrq->cfg.data.prde.address = cpu_to_le64(
				rq->vrq_md->phys_addr +
				sizeof(union atto_vda_req));
			rq->flags |= RF_FAILURE_OK;
			a->init_msg = ESAS2R_INIT_MSG_GET_INIT;
			break;
		}

	case ESAS2R_INIT_MSG_GET_INIT:
		if (msg == ESAS2R_INIT_MSG_GET_INIT) {
			ci = (struct atto_vda_cfg_init *)rq->data_buf;
			if (rq->req_stat == RS_SUCCESS) {
				a->num_targets_backend =
					le32_to_cpu(ci->num_targets_backend);
				a->ioctl_tunnel =
					le32_to_cpu(ci->ioctl_tunnel);
			} else {
				esas2r_hdebug("FAILED");
			}
		}
	/* fall through */

	default:
		rq->req_stat = RS_SUCCESS;
		return false;
	}
	return true;
}

/*
 * Perform initialization messages via the request queue.  Messages are
 * performed with interrupts disabled.
 */
bool esas2r_init_msgs(struct esas2r_adapter *a)
{
	bool success = true;
	struct esas2r_request *rq = &a->general_req;

	esas2r_rq_init_request(rq, a);
	rq->comp_cb = esas2r_dummy_complete;

	if (a->init_msg == 0)
		a->init_msg = ESAS2R_INIT_MSG_REINIT;

	while (a->init_msg) {
		if (esas2r_format_init_msg(a, rq)) {
			unsigned long flags;
			while (true) {
				spin_lock_irqsave(&a->queue_lock, flags);
				esas2r_start_vda_request(a, rq);
				spin_unlock_irqrestore(&a->queue_lock, flags);
				esas2r_wait_request(a, rq);
				if (rq->req_stat != RS_PENDING)
					break;
			}
		}

		if (rq->req_stat == RS_SUCCESS
		    || ((rq->flags & RF_FAILURE_OK)
			&& rq->req_stat != RS_TIMEOUT))
			continue;

		esas2r_log(ESAS2R_LOG_CRIT, "init message %x failed (%x, %x)",
			   a->init_msg, rq->req_stat, rq->flags);
		a->init_msg = ESAS2R_INIT_MSG_START;
		success = false;
		break;
	}

	esas2r_rq_destroy_request(rq, a);
	return success;
}

/* Initialize the adapter chip */
bool esas2r_init_adapter_hw(struct esas2r_adapter *a, bool init_poll)
{
	bool rslt = false;
	struct esas2r_request *rq;
	u32 i;

1338
	if (test_bit(AF_DEGRADED_MODE, &a->flags))
1339 1340
		goto exit;

1341
	if (!test_bit(AF_NVR_VALID, &a->flags)) {
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		if (!esas2r_nvram_read_direct(a))
			esas2r_log(ESAS2R_LOG_WARN,
				   "invalid/missing NVRAM parameters");
	}

	if (!esas2r_init_msgs(a)) {
		esas2r_set_degraded_mode(a, "init messages failed");
		goto exit;
	}

	/* The firmware is ready. */
1353 1354
	clear_bit(AF_DEGRADED_MODE, &a->flags);
	clear_bit(AF_CHPRST_PENDING, &a->flags);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	/* Post all the async event requests */
	for (i = 0, rq = a->first_ae_req; i < num_ae_requests; i++, rq++)
		esas2r_start_ae_request(a, rq);

	if (!a->flash_rev[0])
		esas2r_read_flash_rev(a);

	if (!a->image_type[0])
		esas2r_read_image_type(a);

	if (a->fw_version == 0)
		a->fw_rev[0] = 0;
	else
		sprintf(a->fw_rev, "%1d.%02d",
			(int)LOBYTE(HIWORD(a->fw_version)),
			(int)HIBYTE(HIWORD(a->fw_version)));

	esas2r_hdebug("firmware revision: %s", a->fw_rev);

1375 1376
	if (test_bit(AF_CHPRST_DETECTED, &a->flags)
	    && (test_bit(AF_FIRST_INIT, &a->flags))) {
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		esas2r_enable_chip_interrupts(a);
		return true;
	}

	/* initialize discovery */
	esas2r_disc_initialize(a);

	/*
	 * wait for the device wait time to expire here if requested.  this is
	 * usually requested during initial driver load and possibly when
	 * resuming from a low power state.  deferred device waiting will use
	 * interrupts.  chip reset recovery always defers device waiting to
	 * avoid being in a TASKLET too long.
	 */
	if (init_poll) {
		u32 currtime = a->disc_start_time;
		u32 nexttick = 100;
		u32 deltatime;

		/*
		 * Block Tasklets from getting scheduled and indicate this is
		 * polled discovery.
		 */
1400 1401
		set_bit(AF_TASKLET_SCHEDULED, &a->flags);
		set_bit(AF_DISC_POLLED, &a->flags);
1402 1403 1404 1405 1406 1407

		/*
		 * Temporarily bring the disable count to zero to enable
		 * deferred processing.  Note that the count is already zero
		 * after the first initialization.
		 */
1408
		if (test_bit(AF_FIRST_INIT, &a->flags))
1409 1410
			atomic_dec(&a->disable_cnt);

1411
		while (test_bit(AF_DISC_PENDING, &a->flags)) {
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
			schedule_timeout_interruptible(msecs_to_jiffies(100));

			/*
			 * Determine the need for a timer tick based on the
			 * delta time between this and the last iteration of
			 * this loop.  We don't use the absolute time because
			 * then we would have to worry about when nexttick
			 * wraps and currtime hasn't yet.
			 */
			deltatime = jiffies_to_msecs(jiffies) - currtime;
			currtime += deltatime;

			/*
			 * Process any waiting discovery as long as the chip is
			 * up.  If a chip reset happens during initial polling,
			 * we have to make sure the timer tick processes the
			 * doorbell indicating the firmware is ready.
			 */
1430
			if (!test_bit(AF_CHPRST_PENDING, &a->flags))
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
				esas2r_disc_check_for_work(a);

			/* Simulate a timer tick. */
			if (nexttick <= deltatime) {

				/* Time for a timer tick */
				nexttick += 100;
				esas2r_timer_tick(a);
			}

			if (nexttick > deltatime)
				nexttick -= deltatime;

			/* Do any deferred processing */
			if (esas2r_is_tasklet_pending(a))
				esas2r_do_tasklet_tasks(a);

		}

1450
		if (test_bit(AF_FIRST_INIT, &a->flags))
1451 1452
			atomic_inc(&a->disable_cnt);

1453 1454
		clear_bit(AF_DISC_POLLED, &a->flags);
		clear_bit(AF_TASKLET_SCHEDULED, &a->flags);
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	}


	esas2r_targ_db_report_changes(a);

	/*
	 * For cases where (a) the initialization messages processing may
	 * handle an interrupt for a port event and a discovery is waiting, but
	 * we are not waiting for devices, or (b) the device wait time has been
	 * exhausted but there is still discovery pending, start any leftover
	 * discovery in interrupt driven mode.
	 */
	esas2r_disc_start_waiting(a);

	/* Enable chip interrupts */
	a->int_mask = ESAS2R_INT_STS_MASK;
	esas2r_enable_chip_interrupts(a);
	esas2r_enable_heartbeat(a);
	rslt = true;

exit:
	/*
	 * Regardless of whether initialization was successful, certain things
	 * need to get done before we exit.
	 */

1481 1482
	if (test_bit(AF_CHPRST_DETECTED, &a->flags) &&
	    test_bit(AF_FIRST_INIT, &a->flags)) {
1483 1484 1485 1486 1487 1488
		/*
		 * Reinitialization was performed during the first
		 * initialization.  Only clear the chip reset flag so the
		 * original device polling is not cancelled.
		 */
		if (!rslt)
1489
			clear_bit(AF_CHPRST_PENDING, &a->flags);
1490 1491 1492
	} else {
		/* First initialization or a subsequent re-init is complete. */
		if (!rslt) {
1493 1494
			clear_bit(AF_CHPRST_PENDING, &a->flags);
			clear_bit(AF_DISC_PENDING, &a->flags);
1495 1496 1497 1498
		}


		/* Enable deferred processing after the first initialization. */
1499 1500
		if (test_bit(AF_FIRST_INIT, &a->flags)) {
			clear_bit(AF_FIRST_INIT, &a->flags);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

			if (atomic_dec_return(&a->disable_cnt) == 0)
				esas2r_do_deferred_processes(a);
		}
	}

	return rslt;
}

void esas2r_reset_adapter(struct esas2r_adapter *a)
{
1512
	set_bit(AF_OS_RESET, &a->flags);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	esas2r_local_reset_adapter(a);
	esas2r_schedule_tasklet(a);
}

void esas2r_reset_chip(struct esas2r_adapter *a)
{
	if (!esas2r_is_adapter_present(a))
		return;

	/*
	 * Before we reset the chip, save off the VDA core dump.  The VDA core
	 * dump is located in the upper 512KB of the onchip SRAM.  Make sure
	 * to not overwrite a previous crash that was saved.
	 */
1527 1528
	if (test_bit(AF2_COREDUMP_AVAIL, &a->flags2) &&
	    !test_bit(AF2_COREDUMP_SAVED, &a->flags2)) {
1529 1530 1531 1532 1533
		esas2r_read_mem_block(a,
				      a->fw_coredump_buff,
				      MW_DATA_ADDR_SRAM + 0x80000,
				      ESAS2R_FWCOREDUMP_SZ);

1534
		set_bit(AF2_COREDUMP_SAVED, &a->flags2);
1535 1536
	}

1537
	clear_bit(AF2_COREDUMP_AVAIL, &a->flags2);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

	/* Reset the chip */
	if (a->pcid->revision == MVR_FREY_B2)
		esas2r_write_register_dword(a, MU_CTL_STATUS_IN_B2,
					    MU_CTL_IN_FULL_RST2);
	else
		esas2r_write_register_dword(a, MU_CTL_STATUS_IN,
					    MU_CTL_IN_FULL_RST);


	/* Stall a little while to let the reset condition clear */
	mdelay(10);
}

static void esas2r_power_down_notify_firmware(struct esas2r_adapter *a)
{
	u32 starttime;
	u32 doorbell;

	esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_POWER_DOWN);
	starttime = jiffies_to_msecs(jiffies);

	while (true) {
		doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
		if (doorbell & DRBL_POWER_DOWN) {
			esas2r_write_register_dword(a, MU_DOORBELL_OUT,
						    doorbell);
			break;
		}

		schedule_timeout_interruptible(msecs_to_jiffies(100));

		if ((jiffies_to_msecs(jiffies) - starttime) > 30000) {
			esas2r_hdebug("Timeout waiting for power down");
			break;
		}
	}
}

/*
 * Perform power management processing including managing device states, adapter
 * states, interrupts, and I/O.
 */
void esas2r_power_down(struct esas2r_adapter *a)
{
1583 1584
	set_bit(AF_POWER_MGT, &a->flags);
	set_bit(AF_POWER_DOWN, &a->flags);
1585

1586
	if (!test_bit(AF_DEGRADED_MODE, &a->flags)) {
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		u32 starttime;
		u32 doorbell;

		/*
		 * We are currently running OK and will be reinitializing later.
		 * increment the disable count to coordinate with
		 * esas2r_init_adapter.  We don't have to do this in degraded
		 * mode since we never enabled interrupts in the first place.
		 */
		esas2r_disable_chip_interrupts(a);
		esas2r_disable_heartbeat(a);

		/* wait for any VDA activity to clear before continuing */
		esas2r_write_register_dword(a, MU_DOORBELL_IN,
					    DRBL_MSG_IFC_DOWN);
		starttime = jiffies_to_msecs(jiffies);

		while (true) {
			doorbell =
				esas2r_read_register_dword(a, MU_DOORBELL_OUT);
			if (doorbell & DRBL_MSG_IFC_DOWN) {
				esas2r_write_register_dword(a, MU_DOORBELL_OUT,
							    doorbell);
				break;
			}

			schedule_timeout_interruptible(msecs_to_jiffies(100));

			if ((jiffies_to_msecs(jiffies) - starttime) > 3000) {
				esas2r_hdebug(
					"timeout waiting for interface down");
				break;
			}
		}

		/*
		 * For versions of firmware that support it tell them the driver
		 * is powering down.
		 */
1626
		if (test_bit(AF2_VDA_POWER_DOWN, &a->flags2))
1627 1628 1629 1630
			esas2r_power_down_notify_firmware(a);
	}

	/* Suspend I/O processing. */
1631 1632 1633
	set_bit(AF_OS_RESET, &a->flags);
	set_bit(AF_DISC_PENDING, &a->flags);
	set_bit(AF_CHPRST_PENDING, &a->flags);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

	esas2r_process_adapter_reset(a);

	/* Remove devices now that I/O is cleaned up. */
	a->prev_dev_cnt = esas2r_targ_db_get_tgt_cnt(a);
	esas2r_targ_db_remove_all(a, false);
}

/*
 * Perform power management processing including managing device states, adapter
 * states, interrupts, and I/O.
 */
bool esas2r_power_up(struct esas2r_adapter *a, bool init_poll)
{
	bool ret;

1650
	clear_bit(AF_POWER_DOWN, &a->flags);
1651
	esas2r_init_pci_cfg_space(a);
1652
	set_bit(AF_FIRST_INIT, &a->flags);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	atomic_inc(&a->disable_cnt);

	/* reinitialize the adapter */
	ret = esas2r_check_adapter(a);
	if (!esas2r_init_adapter_hw(a, init_poll))
		ret = false;

	/* send the reset asynchronous event */
	esas2r_send_reset_ae(a, true);

	/* clear this flag after initialization. */
1664
	clear_bit(AF_POWER_MGT, &a->flags);
1665 1666 1667 1668 1669
	return ret;
}

bool esas2r_is_adapter_present(struct esas2r_adapter *a)
{
1670
	if (test_bit(AF_NOT_PRESENT, &a->flags))
1671 1672 1673
		return false;

	if (esas2r_read_register_dword(a, MU_DOORBELL_OUT) == 0xFFFFFFFF) {
1674
		set_bit(AF_NOT_PRESENT, &a->flags);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747

		return false;
	}
	return true;
}

const char *esas2r_get_model_name(struct esas2r_adapter *a)
{
	switch (a->pcid->subsystem_device) {
	case ATTO_ESAS_R680:
		return "ATTO ExpressSAS R680";

	case ATTO_ESAS_R608:
		return "ATTO ExpressSAS R608";

	case ATTO_ESAS_R60F:
		return "ATTO ExpressSAS R60F";

	case ATTO_ESAS_R6F0:
		return "ATTO ExpressSAS R6F0";

	case ATTO_ESAS_R644:
		return "ATTO ExpressSAS R644";

	case ATTO_ESAS_R648:
		return "ATTO ExpressSAS R648";

	case ATTO_TSSC_3808:
		return "ATTO ThunderStream SC 3808D";

	case ATTO_TSSC_3808E:
		return "ATTO ThunderStream SC 3808E";

	case ATTO_TLSH_1068:
		return "ATTO ThunderLink SH 1068";
	}

	return "ATTO SAS Controller";
}

const char *esas2r_get_model_name_short(struct esas2r_adapter *a)
{
	switch (a->pcid->subsystem_device) {
	case ATTO_ESAS_R680:
		return "R680";

	case ATTO_ESAS_R608:
		return "R608";

	case ATTO_ESAS_R60F:
		return "R60F";

	case ATTO_ESAS_R6F0:
		return "R6F0";

	case ATTO_ESAS_R644:
		return "R644";

	case ATTO_ESAS_R648:
		return "R648";

	case ATTO_TSSC_3808:
		return "SC 3808D";

	case ATTO_TSSC_3808E:
		return "SC 3808E";

	case ATTO_TLSH_1068:
		return "SH 1068";
	}

	return "unknown";
}