nv50_display.c 55.7 KB
Newer Older
1
	/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 * Copyright 2011 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

25
#include <linux/dma-mapping.h>
26

27 28
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
29

30 31 32
#include "nouveau_drm.h"
#include "nouveau_dma.h"
#include "nouveau_gem.h"
33 34 35
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
36
#include "nouveau_fence.h"
37
#include "nv50_display.h"
38

39
#include <core/client.h>
40
#include <core/gpuobj.h>
41
#include <core/class.h>
42 43 44 45 46

#include <subdev/timer.h>
#include <subdev/bar.h>
#include <subdev/fb.h>

47 48
#define EVO_DMA_NR 9

49
#define EVO_MASTER  (0x00)
50
#define EVO_FLIP(c) (0x01 + (c))
51 52
#define EVO_OVLY(c) (0x05 + (c))
#define EVO_OIMM(c) (0x09 + (c))
53 54
#define EVO_CURS(c) (0x0d + (c))

55 56 57 58 59 60
/* offsets in shared sync bo of various structures */
#define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
#define EVO_MAST_NTFY     EVO_SYNC(  0, 0x00)
#define EVO_FLIP_SEM0(c)  EVO_SYNC((c), 0x00)
#define EVO_FLIP_SEM1(c)  EVO_SYNC((c), 0x10)

61 62 63 64 65 66 67 68 69 70
#define EVO_CORE_HANDLE      (0xd1500000)
#define EVO_CHAN_HANDLE(t,i) (0xd15c0000 | (((t) & 0x00ff) << 8) | (i))
#define EVO_CHAN_OCLASS(t,c) ((nv_hclass(c) & 0xff00) | ((t) & 0x00ff))
#define EVO_PUSH_HANDLE(t,i) (0xd15b0000 | (i) |                               \
			      (((NV50_DISP_##t##_CLASS) & 0x00ff) << 8))

/******************************************************************************
 * EVO channel
 *****************************************************************************/

71
struct nv50_chan {
72 73 74 75 76
	struct nouveau_object *user;
	u32 handle;
};

static int
77 78
nv50_chan_create(struct nouveau_object *core, u32 bclass, u8 head,
		 void *data, u32 size, struct nv50_chan *chan)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
{
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	const u32 oclass = EVO_CHAN_OCLASS(bclass, core);
	const u32 handle = EVO_CHAN_HANDLE(bclass, head);
	int ret;

	ret = nouveau_object_new(client, EVO_CORE_HANDLE, handle,
				 oclass, data, size, &chan->user);
	if (ret)
		return ret;

	chan->handle = handle;
	return 0;
}

static void
95
nv50_chan_destroy(struct nouveau_object *core, struct nv50_chan *chan)
96 97 98 99 100 101 102 103 104 105
{
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	if (chan->handle)
		nouveau_object_del(client, EVO_CORE_HANDLE, chan->handle);
}

/******************************************************************************
 * PIO EVO channel
 *****************************************************************************/

106 107
struct nv50_pioc {
	struct nv50_chan base;
108 109 110
};

static void
111
nv50_pioc_destroy(struct nouveau_object *core, struct nv50_pioc *pioc)
112
{
113
	nv50_chan_destroy(core, &pioc->base);
114 115 116
}

static int
117 118
nv50_pioc_create(struct nouveau_object *core, u32 bclass, u8 head,
		 void *data, u32 size, struct nv50_pioc *pioc)
119
{
120
	return nv50_chan_create(core, bclass, head, data, size, &pioc->base);
121 122 123 124 125 126
}

/******************************************************************************
 * DMA EVO channel
 *****************************************************************************/

127 128
struct nv50_dmac {
	struct nv50_chan base;
129 130
	dma_addr_t handle;
	u32 *ptr;
131 132 133
};

static void
134
nv50_dmac_destroy(struct nouveau_object *core, struct nv50_dmac *dmac)
135 136 137 138 139 140
{
	if (dmac->ptr) {
		struct pci_dev *pdev = nv_device(core)->pdev;
		pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle);
	}

141
	nv50_chan_destroy(core, &dmac->base);
142 143 144
}

static int
145
nv50_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
146 147 148 149
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
150 151 152 153 154 155 156 157 158 159 160 161
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NV50_DMA_CONF0_ENABLE |
					         NV50_DMA_CONF0_PART_256,
				     }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;
162

163 164
	ret = nouveau_object_new(client, parent, NvEvoFB16,
				 NV_DMA_IN_MEMORY_CLASS,
165
				 &(struct nv_dma_class) {
166 167 168 169 170 171
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NV50_DMA_CONF0_ENABLE | 0x70 |
					         NV50_DMA_CONF0_PART_256,
172 173 174 175
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	ret = nouveau_object_new(client, parent, NvEvoFB32,
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NV50_DMA_CONF0_ENABLE | 0x7a |
					         NV50_DMA_CONF0_PART_256,
				 }, sizeof(struct nv_dma_class), &object);
	return ret;
}

static int
nvc0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NVC0_DMA_CONF0_ENABLE,
				     }, sizeof(struct nv_dma_class), &object);
204 205 206
	if (ret)
		return ret;

207
	ret = nouveau_object_new(client, parent, NvEvoFB16,
208 209 210 211
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
212 213 214
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
215 216
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
217
		return ret;
218

219
	ret = nouveau_object_new(client, parent, NvEvoFB32,
220 221 222 223 224 225
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
226
					.conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
227
				 }, sizeof(struct nv_dma_class), &object);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	return ret;
}

static int
nvd0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
					.conf0 = NVD0_DMA_CONF0_ENABLE |
						 NVD0_DMA_CONF0_PAGE_LP,
				     }, sizeof(struct nv_dma_class), &object);
247
	if (ret)
248
		return ret;
249

250
	ret = nouveau_object_new(client, parent, NvEvoFB32,
251 252 253 254 255 256
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
257
					.conf0 = NVD0_DMA_CONF0_ENABLE | 0xfe |
258 259
						 NVD0_DMA_CONF0_PAGE_LP,
				 }, sizeof(struct nv_dma_class), &object);
260 261 262 263
	return ret;
}

static int
264
nv50_dmac_create(struct nouveau_object *core, u32 bclass, u8 head,
265
		 void *data, u32 size, u64 syncbuf,
266
		 struct nv50_dmac *dmac)
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	u32 pushbuf = *(u32 *)data;
	int ret;

	dmac->ptr = pci_alloc_consistent(nv_device(core)->pdev, PAGE_SIZE,
					&dmac->handle);
	if (!dmac->ptr)
		return -ENOMEM;

	ret = nouveau_object_new(client, NVDRM_DEVICE, pushbuf,
				 NV_DMA_FROM_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_PCI_US |
						 NV_DMA_ACCESS_RD,
					.start = dmac->handle + 0x0000,
					.limit = dmac->handle + 0x0fff,
				 }, sizeof(struct nv_dma_class), &object);
287
	if (ret)
288
		return ret;
289

290
	ret = nv50_chan_create(core, bclass, head, data, size, &dmac->base);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	if (ret)
		return ret;

	ret = nouveau_object_new(client, dmac->base.handle, NvEvoSync,
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = syncbuf + 0x0000,
					.limit = syncbuf + 0x0fff,
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;

	ret = nouveau_object_new(client, dmac->base.handle, NvEvoVRAM,
306 307 308 309 310 311 312 313
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
					.limit = pfb->ram.size - 1,
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
314 315 316 317 318 319 320 321 322
		return ret;

	if (nv_device(core)->card_type < NV_C0)
		ret = nv50_dmac_create_fbdma(core, dmac->base.handle);
	else
	if (nv_device(core)->card_type < NV_D0)
		ret = nvc0_dmac_create_fbdma(core, dmac->base.handle);
	else
		ret = nvd0_dmac_create_fbdma(core, dmac->base.handle);
323 324 325
	return ret;
}

326 327
struct nv50_mast {
	struct nv50_dmac base;
328 329
};

330 331
struct nv50_curs {
	struct nv50_pioc base;
332 333
};

334 335
struct nv50_sync {
	struct nv50_dmac base;
336 337 338 339 340 341
	struct {
		u32 offset;
		u16 value;
	} sem;
};

342 343
struct nv50_ovly {
	struct nv50_dmac base;
344
};
345

346 347
struct nv50_oimm {
	struct nv50_pioc base;
348 349
};

350
struct nv50_head {
351
	struct nouveau_crtc base;
352 353 354 355
	struct nv50_curs curs;
	struct nv50_sync sync;
	struct nv50_ovly ovly;
	struct nv50_oimm oimm;
356 357
};

358 359 360 361 362 363 364
#define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
#define nv50_curs(c) (&nv50_head(c)->curs)
#define nv50_sync(c) (&nv50_head(c)->sync)
#define nv50_ovly(c) (&nv50_head(c)->ovly)
#define nv50_oimm(c) (&nv50_head(c)->oimm)
#define nv50_chan(c) (&(c)->base.base)
#define nv50_vers(c) nv_mclass(nv50_chan(c)->user)
365

366
struct nv50_disp {
367
	struct nouveau_object *core;
368
	struct nv50_mast mast;
369 370 371 372

	u32 modeset;

	struct nouveau_bo *sync;
373 374
};

375 376
static struct nv50_disp *
nv50_disp(struct drm_device *dev)
377
{
378
	return nouveau_display(dev)->priv;
379 380
}

381
#define nv50_mast(d) (&nv50_disp(d)->mast)
382

383
static struct drm_crtc *
384
nv50_display_crtc_get(struct drm_encoder *encoder)
385 386 387 388 389 390 391
{
	return nouveau_encoder(encoder)->crtc;
}

/******************************************************************************
 * EVO channel helpers
 *****************************************************************************/
392
static u32 *
393
evo_wait(void *evoc, int nr)
394
{
395
	struct nv50_dmac *dmac = evoc;
396
	u32 put = nv_ro32(dmac->base.user, 0x0000) / 4;
397

398
	if (put + nr >= (PAGE_SIZE / 4) - 8) {
399
		dmac->ptr[put] = 0x20000000;
400

401 402 403
		nv_wo32(dmac->base.user, 0x0000, 0x00000000);
		if (!nv_wait(dmac->base.user, 0x0004, ~0, 0x00000000)) {
			NV_ERROR(dmac->base.user, "channel stalled\n");
404 405 406 407 408 409
			return NULL;
		}

		put = 0;
	}

410
	return dmac->ptr + put;
411 412 413
}

static void
414
evo_kick(u32 *push, void *evoc)
415
{
416
	struct nv50_dmac *dmac = evoc;
417
	nv_wo32(dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
418 419 420 421 422
}

#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d)   *((p)++) = (d)

423 424 425
static bool
evo_sync_wait(void *data)
{
426
	return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000;
427 428 429
}

static int
430
evo_sync(struct drm_device *dev)
431
{
432
	struct nouveau_device *device = nouveau_dev(dev);
433 434
	struct nv50_disp *disp = nv50_disp(dev);
	struct nv50_mast *mast = nv50_mast(dev);
435
	u32 *push = evo_wait(mast, 8);
436
	if (push) {
437
		nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
438
		evo_mthd(push, 0x0084, 1);
439
		evo_data(push, 0x80000000 | EVO_MAST_NTFY);
440 441 442
		evo_mthd(push, 0x0080, 2);
		evo_data(push, 0x00000000);
		evo_data(push, 0x00000000);
443
		evo_kick(push, mast);
444
		if (nv_wait_cb(device, evo_sync_wait, disp->sync))
445 446 447 448 449 450 451
			return 0;
	}

	return -EBUSY;
}

/******************************************************************************
452
 * Page flipping channel
453 454
 *****************************************************************************/
struct nouveau_bo *
455
nv50_display_crtc_sema(struct drm_device *dev, int crtc)
456
{
457
	return nv50_disp(dev)->sync;
458 459 460
}

void
461
nv50_display_flip_stop(struct drm_crtc *crtc)
462
{
463
	struct nv50_sync *sync = nv50_sync(crtc);
464 465
	u32 *push;

466
	push = evo_wait(sync, 8);
467 468 469 470 471 472 473 474 475
	if (push) {
		evo_mthd(push, 0x0084, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0094, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x00c0, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0080, 1);
		evo_data(push, 0x00000000);
476
		evo_kick(push, sync);
477 478 479 480
	}
}

int
481
nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
482 483 484
		       struct nouveau_channel *chan, u32 swap_interval)
{
	struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
485
	struct nv50_disp *disp = nv50_disp(crtc->dev);
486
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
487
	struct nv50_sync *sync = nv50_sync(crtc);
488 489 490 491 492 493 494
	u32 *push;
	int ret;

	swap_interval <<= 4;
	if (swap_interval == 0)
		swap_interval |= 0x100;

495
	push = evo_wait(sync, 128);
496 497 498 499 500 501 502 503 504
	if (unlikely(push == NULL))
		return -EBUSY;

	/* synchronise with the rendering channel, if necessary */
	if (likely(chan)) {
		ret = RING_SPACE(chan, 10);
		if (ret)
			return ret;

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
		if (nv_mclass(chan->object) < NVC0_CHANNEL_IND_CLASS) {
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2);
			OUT_RING  (chan, NvEvoSema0 + nv_crtc->index);
			OUT_RING  (chan, sync->sem.offset);
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1);
			OUT_RING  (chan, 0xf00d0000 | sync->sem.value);
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2);
			OUT_RING  (chan, sync->sem.offset ^ 0x10);
			OUT_RING  (chan, 0x74b1e000);
			BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1);
			if (nv_mclass(chan->object) < NV84_CHANNEL_DMA_CLASS)
				OUT_RING  (chan, NvSema);
			else
				OUT_RING  (chan, chan->vram);
		} else {
			u64 offset = nvc0_fence_crtc(chan, nv_crtc->index);
			offset += sync->sem.offset;

			BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
			OUT_RING  (chan, upper_32_bits(offset));
			OUT_RING  (chan, lower_32_bits(offset));
			OUT_RING  (chan, 0xf00d0000 | sync->sem.value);
			OUT_RING  (chan, 0x1002);
			BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
			OUT_RING  (chan, upper_32_bits(offset));
			OUT_RING  (chan, lower_32_bits(offset ^ 0x10));
			OUT_RING  (chan, 0x74b1e000);
			OUT_RING  (chan, 0x1001);
		}
534

535 536
		FIRE_RING (chan);
	} else {
537 538 539
		nouveau_bo_wr32(disp->sync, sync->sem.offset / 4,
				0xf00d0000 | sync->sem.value);
		evo_sync(crtc->dev);
540 541 542 543 544 545 546 547 548 549 550 551
	}

	/* queue the flip */
	evo_mthd(push, 0x0100, 1);
	evo_data(push, 0xfffe0000);
	evo_mthd(push, 0x0084, 1);
	evo_data(push, swap_interval);
	if (!(swap_interval & 0x00000100)) {
		evo_mthd(push, 0x00e0, 1);
		evo_data(push, 0x40000000);
	}
	evo_mthd(push, 0x0088, 4);
552 553
	evo_data(push, sync->sem.offset);
	evo_data(push, 0xf00d0000 | sync->sem.value);
554 555 556 557 558 559 560 561 562 563
	evo_data(push, 0x74b1e000);
	evo_data(push, NvEvoSync);
	evo_mthd(push, 0x00a0, 2);
	evo_data(push, 0x00000000);
	evo_data(push, 0x00000000);
	evo_mthd(push, 0x00c0, 1);
	evo_data(push, nv_fb->r_dma);
	evo_mthd(push, 0x0110, 2);
	evo_data(push, 0x00000000);
	evo_data(push, 0x00000000);
564
	if (nv50_vers(sync) < NVD0_DISP_SYNC_CLASS) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578
		evo_mthd(push, 0x0800, 5);
		evo_data(push, nv_fb->nvbo->bo.offset >> 8);
		evo_data(push, 0);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nv_fb->r_pitch);
		evo_data(push, nv_fb->r_format);
	} else {
		evo_mthd(push, 0x0400, 5);
		evo_data(push, nv_fb->nvbo->bo.offset >> 8);
		evo_data(push, 0);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nv_fb->r_pitch);
		evo_data(push, nv_fb->r_format);
	}
579 580
	evo_mthd(push, 0x0080, 1);
	evo_data(push, 0x00000000);
581
	evo_kick(push, sync);
582

583 584
	sync->sem.offset ^= 0x10;
	sync->sem.value++;
585 586 587
	return 0;
}

588 589 590 591
/******************************************************************************
 * CRTC
 *****************************************************************************/
static int
592
nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
593
{
594
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
595 596 597
	struct nouveau_connector *nv_connector;
	struct drm_connector *connector;
	u32 *push, mode = 0x00;
598

599
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
600 601 602 603 604 605 606 607 608 609 610 611 612
	connector = &nv_connector->base;
	if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
		if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
			mode = DITHERING_MODE_DYNAMIC2X2;
	} else {
		mode = nv_connector->dithering_mode;
	}

	if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
		if (connector->display_info.bpc >= 8)
			mode |= DITHERING_DEPTH_8BPC;
	} else {
		mode |= nv_connector->dithering_depth;
613 614
	}

615
	push = evo_wait(mast, 4);
616
	if (push) {
617
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
618 619 620
			evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1);
			evo_data(push, mode);
		} else
621
		if (nv50_vers(mast) < NVE0_DISP_MAST_CLASS) {
622 623 624 625 626 627 628
			evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1);
			evo_data(push, mode);
		} else {
			evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1);
			evo_data(push, mode);
		}

629 630 631 632
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
633
		evo_kick(push, mast);
634 635 636 637 638 639
	}

	return 0;
}

static int
640
nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
641
{
642
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
643
	struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
644
	struct drm_crtc *crtc = &nv_crtc->base;
B
Ben Skeggs 已提交
645
	struct nouveau_connector *nv_connector;
646 647
	int mode = DRM_MODE_SCALE_NONE;
	u32 oX, oY, *push;
B
Ben Skeggs 已提交
648

649 650 651
	/* start off at the resolution we programmed the crtc for, this
	 * effectively handles NONE/FULL scaling
	 */
B
Ben Skeggs 已提交
652
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	if (nv_connector && nv_connector->native_mode)
		mode = nv_connector->scaling_mode;

	if (mode != DRM_MODE_SCALE_NONE)
		omode = nv_connector->native_mode;
	else
		omode = umode;

	oX = omode->hdisplay;
	oY = omode->vdisplay;
	if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
		oY *= 2;

	/* add overscan compensation if necessary, will keep the aspect
	 * ratio the same as the backend mode unless overridden by the
	 * user setting both hborder and vborder properties.
	 */
	if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
			     (nv_connector->underscan == UNDERSCAN_AUTO &&
			      nv_connector->edid &&
			      drm_detect_hdmi_monitor(nv_connector->edid)))) {
		u32 bX = nv_connector->underscan_hborder;
		u32 bY = nv_connector->underscan_vborder;
		u32 aspect = (oY << 19) / oX;

		if (bX) {
			oX -= (bX * 2);
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
		} else {
			oX -= (oX >> 4) + 32;
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
		}
	}

	/* handle CENTER/ASPECT scaling, taking into account the areas
	 * removed already for overscan compensation
	 */
	switch (mode) {
	case DRM_MODE_SCALE_CENTER:
		oX = min((u32)umode->hdisplay, oX);
		oY = min((u32)umode->vdisplay, oY);
		/* fall-through */
	case DRM_MODE_SCALE_ASPECT:
		if (oY < oX) {
			u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
			oX = ((oY * aspect) + (aspect / 2)) >> 19;
		} else {
			u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
			oY = ((oX * aspect) + (aspect / 2)) >> 19;
B
Ben Skeggs 已提交
704
		}
705 706 707
		break;
	default:
		break;
B
Ben Skeggs 已提交
708
	}
709

710
	push = evo_wait(mast, 8);
711
	if (push) {
712
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
			/*XXX: SCALE_CTRL_ACTIVE??? */
			evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1);
			evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
		} else {
			evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
			evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
		}

		evo_kick(push, mast);

734
		if (update) {
735 736
			nv50_display_flip_stop(crtc);
			nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
737 738 739 740 741 742
		}
	}

	return 0;
}

743
static int
744
nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
745
{
746
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
747 748 749 750 751 752 753 754 755
	u32 *push, hue, vib;
	int adj;

	adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
	vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
	hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;

	push = evo_wait(mast, 16);
	if (push) {
756
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
			evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1);
			evo_data(push, (hue << 20) | (vib << 8));
		} else {
			evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1);
			evo_data(push, (hue << 20) | (vib << 8));
		}

		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
		evo_kick(push, mast);
	}

	return 0;
}

774
static int
775
nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
776 777 778
		    int x, int y, bool update)
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
779
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
780 781
	u32 *push;

782
	push = evo_wait(mast, 16);
783
	if (push) {
784
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
785 786 787 788 789 790 791 792
			evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1);
			evo_data(push, nvfb->nvbo->bo.offset >> 8);
			evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3);
			evo_data(push, (fb->height << 16) | fb->width);
			evo_data(push, nvfb->r_pitch);
			evo_data(push, nvfb->r_format);
			evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1);
			evo_data(push, (y << 16) | x);
793
			if (nv50_vers(mast) > NV50_DISP_MAST_CLASS) {
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
				evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
				evo_data(push, nvfb->r_dma);
			}
		} else {
			evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
			evo_data(push, nvfb->nvbo->bo.offset >> 8);
			evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
			evo_data(push, (fb->height << 16) | fb->width);
			evo_data(push, nvfb->r_pitch);
			evo_data(push, nvfb->r_format);
			evo_data(push, nvfb->r_dma);
			evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
			evo_data(push, (y << 16) | x);
		}

809 810 811 812
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
813
		evo_kick(push, mast);
814 815
	}

816
	nv_crtc->fb.tile_flags = nvfb->r_dma;
817 818 819 820
	return 0;
}

static void
821
nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc)
822
{
823
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
824
	u32 *push = evo_wait(mast, 16);
825
	if (push) {
826
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
827 828 829 830
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
		} else
831
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
832 833 834 835 836 837
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM);
		} else {
838 839 840 841
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
842
			evo_data(push, NvEvoVRAM);
843 844 845 846 847 848
		}
		evo_kick(push, mast);
	}
}

static void
849
nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc)
850
{
851
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
852 853
	u32 *push = evo_wait(mast, 16);
	if (push) {
854
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
855 856 857
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x05000000);
		} else
858
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
859 860 861 862
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
863 864 865 866 867 868
		} else {
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}
869 870 871
		evo_kick(push, mast);
	}
}
872

873
static void
874
nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update)
875
{
876
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
877 878

	if (show)
879
		nv50_crtc_cursor_show(nv_crtc);
880
	else
881
		nv50_crtc_cursor_hide(nv_crtc);
882 883 884 885

	if (update) {
		u32 *push = evo_wait(mast, 2);
		if (push) {
886 887
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
888
			evo_kick(push, mast);
889 890 891 892 893
		}
	}
}

static void
894
nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
895 896 897 898
{
}

static void
899
nv50_crtc_prepare(struct drm_crtc *crtc)
900 901
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
902
	struct nv50_mast *mast = nv50_mast(crtc->dev);
903 904
	u32 *push;

905
	nv50_display_flip_stop(crtc);
906

907
	push = evo_wait(mast, 2);
908
	if (push) {
909
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
910 911 912 913 914
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x40000000);
		} else
915
		if (nv50_vers(mast) <  NVD0_DISP_MAST_CLASS) {
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x40000000);
			evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
		} else {
			evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x03000000);
			evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}

		evo_kick(push, mast);
932 933
	}

934
	nv50_crtc_cursor_show_hide(nv_crtc, false, false);
935 936 937
}

static void
938
nv50_crtc_commit(struct drm_crtc *crtc)
939 940
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
941
	struct nv50_mast *mast = nv50_mast(crtc->dev);
942 943
	u32 *push;

944
	push = evo_wait(mast, 32);
945
	if (push) {
946
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
947 948 949 950 951 952
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM_LP);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0xc0000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
		} else
953
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, nv_crtc->fb.tile_flags);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0xc0000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM);
		} else {
			evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
			evo_data(push, nv_crtc->fb.tile_flags);
			evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
			evo_data(push, 0x83000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
			evo_data(push, 0x00000000);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
			evo_data(push, NvEvoVRAM);
			evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0xffffff00);
		}

		evo_kick(push, mast);
976 977
	}

978 979
	nv50_crtc_cursor_show_hide(nv_crtc, nv_crtc->cursor.visible, true);
	nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
980 981 982
}

static bool
983
nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
984 985 986 987 988 989
		     struct drm_display_mode *adjusted_mode)
{
	return true;
}

static int
990
nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
	int ret;

	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
	if (ret)
		return ret;

	if (old_fb) {
		nvfb = nouveau_framebuffer(old_fb);
		nouveau_bo_unpin(nvfb->nvbo);
	}

	return 0;
}

static int
1008
nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
1009 1010 1011
		   struct drm_display_mode *mode, int x, int y,
		   struct drm_framebuffer *old_fb)
{
1012
	struct nv50_mast *mast = nv50_mast(crtc->dev);
1013 1014
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct nouveau_connector *nv_connector;
1015 1016 1017 1018 1019
	u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
	u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
	u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
	u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
	u32 vblan2e = 0, vblan2s = 1;
1020
	u32 *push;
1021 1022
	int ret;

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	hactive = mode->htotal;
	hsynce  = mode->hsync_end - mode->hsync_start - 1;
	hbackp  = mode->htotal - mode->hsync_end;
	hblanke = hsynce + hbackp;
	hfrontp = mode->hsync_start - mode->hdisplay;
	hblanks = mode->htotal - hfrontp - 1;

	vactive = mode->vtotal * vscan / ilace;
	vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
	vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
	vblanke = vsynce + vbackp;
	vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
	vblanks = vactive - vfrontp - 1;
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vblan2e = vactive + vsynce + vbackp;
		vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
		vactive = (vactive * 2) + 1;
	}

1042
	ret = nv50_crtc_swap_fbs(crtc, old_fb);
1043 1044 1045
	if (ret)
		return ret;

1046
	push = evo_wait(mast, 64);
1047
	if (push) {
1048
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
			evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x00800000 | mode->clock);
			evo_data(push, (ilace == 2) ? 2 : 0);
			evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6);
			evo_data(push, 0x00000000);
			evo_data(push, (vactive << 16) | hactive);
			evo_data(push, ( vsynce << 16) | hsynce);
			evo_data(push, (vblanke << 16) | hblanke);
			evo_data(push, (vblanks << 16) | hblanks);
			evo_data(push, (vblan2e << 16) | vblan2s);
			evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x00000311);
			evo_data(push, 0x00000100);
		} else {
			evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
			evo_data(push, 0x00000000);
			evo_data(push, (vactive << 16) | hactive);
			evo_data(push, ( vsynce << 16) | hsynce);
			evo_data(push, (vblanke << 16) | hblanke);
			evo_data(push, (vblanks << 16) | hblanks);
			evo_data(push, (vblan2e << 16) | vblan2s);
			evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000); /* ??? */
			evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
			evo_data(push, mode->clock * 1000);
			evo_data(push, 0x00200000); /* ??? */
			evo_data(push, mode->clock * 1000);
			evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x00000311);
			evo_data(push, 0x00000100);
		}

		evo_kick(push, mast);
1084 1085 1086
	}

	nv_connector = nouveau_crtc_connector_get(nv_crtc);
1087 1088 1089 1090
	nv50_crtc_set_dither(nv_crtc, false);
	nv50_crtc_set_scale(nv_crtc, false);
	nv50_crtc_set_color_vibrance(nv_crtc, false);
	nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
1091 1092 1093 1094
	return 0;
}

static int
1095
nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
1096 1097
			struct drm_framebuffer *old_fb)
{
1098
	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
1099 1100 1101
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	int ret;

1102
	if (!crtc->fb) {
1103
		NV_DEBUG(drm, "No FB bound\n");
1104 1105 1106
		return 0;
	}

1107
	ret = nv50_crtc_swap_fbs(crtc, old_fb);
1108 1109 1110
	if (ret)
		return ret;

1111 1112 1113
	nv50_display_flip_stop(crtc);
	nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
	nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
1114 1115 1116 1117
	return 0;
}

static int
1118
nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
1119 1120 1121 1122
			       struct drm_framebuffer *fb, int x, int y,
			       enum mode_set_atomic state)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1123 1124
	nv50_display_flip_stop(crtc);
	nv50_crtc_set_image(nv_crtc, fb, x, y, true);
1125 1126 1127 1128
	return 0;
}

static void
1129
nv50_crtc_lut_load(struct drm_crtc *crtc)
1130
{
1131
	struct nv50_disp *disp = nv50_disp(crtc->dev);
1132 1133 1134 1135 1136
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
	int i;

	for (i = 0; i < 256; i++) {
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		u16 r = nv_crtc->lut.r[i] >> 2;
		u16 g = nv_crtc->lut.g[i] >> 2;
		u16 b = nv_crtc->lut.b[i] >> 2;

		if (nv_mclass(disp->core) < NVD0_DISP_CLASS) {
			writew(r + 0x0000, lut + (i * 0x08) + 0);
			writew(g + 0x0000, lut + (i * 0x08) + 2);
			writew(b + 0x0000, lut + (i * 0x08) + 4);
		} else {
			writew(r + 0x6000, lut + (i * 0x20) + 0);
			writew(g + 0x6000, lut + (i * 0x20) + 2);
			writew(b + 0x6000, lut + (i * 0x20) + 4);
		}
1150 1151 1152 1153
	}
}

static int
1154
nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		     uint32_t handle, uint32_t width, uint32_t height)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_gem_object *gem;
	struct nouveau_bo *nvbo;
	bool visible = (handle != 0);
	int i, ret = 0;

	if (visible) {
		if (width != 64 || height != 64)
			return -EINVAL;

		gem = drm_gem_object_lookup(dev, file_priv, handle);
		if (unlikely(!gem))
			return -ENOENT;
		nvbo = nouveau_gem_object(gem);

		ret = nouveau_bo_map(nvbo);
		if (ret == 0) {
			for (i = 0; i < 64 * 64; i++) {
				u32 v = nouveau_bo_rd32(nvbo, i);
				nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
			}
			nouveau_bo_unmap(nvbo);
		}

		drm_gem_object_unreference_unlocked(gem);
	}

	if (visible != nv_crtc->cursor.visible) {
1186
		nv50_crtc_cursor_show_hide(nv_crtc, visible, true);
1187 1188 1189 1190 1191 1192 1193
		nv_crtc->cursor.visible = visible;
	}

	return ret;
}

static int
1194
nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1195
{
1196 1197
	struct nv50_curs *curs = nv50_curs(crtc);
	struct nv50_chan *chan = nv50_chan(curs);
1198 1199
	nv_wo32(chan->user, 0x0084, (y << 16) | (x & 0xffff));
	nv_wo32(chan->user, 0x0080, 0x00000000);
1200 1201 1202 1203
	return 0;
}

static void
1204
nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		    uint32_t start, uint32_t size)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 end = max(start + size, (u32)256);
	u32 i;

	for (i = start; i < end; i++) {
		nv_crtc->lut.r[i] = r[i];
		nv_crtc->lut.g[i] = g[i];
		nv_crtc->lut.b[i] = b[i];
	}

1217
	nv50_crtc_lut_load(crtc);
1218 1219 1220
}

static void
1221
nv50_crtc_destroy(struct drm_crtc *crtc)
1222 1223
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1224 1225 1226 1227 1228 1229
	struct nv50_disp *disp = nv50_disp(crtc->dev);
	struct nv50_head *head = nv50_head(crtc);
	nv50_dmac_destroy(disp->core, &head->ovly.base);
	nv50_pioc_destroy(disp->core, &head->oimm.base);
	nv50_dmac_destroy(disp->core, &head->sync.base);
	nv50_pioc_destroy(disp->core, &head->curs.base);
1230
	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
1231 1232
	if (nv_crtc->cursor.nvbo)
		nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1233 1234
	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	nouveau_bo_unmap(nv_crtc->lut.nvbo);
1235 1236
	if (nv_crtc->lut.nvbo)
		nouveau_bo_unpin(nv_crtc->lut.nvbo);
1237 1238 1239 1240 1241
	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	drm_crtc_cleanup(crtc);
	kfree(crtc);
}

1242 1243 1244 1245 1246 1247 1248 1249 1250
static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = {
	.dpms = nv50_crtc_dpms,
	.prepare = nv50_crtc_prepare,
	.commit = nv50_crtc_commit,
	.mode_fixup = nv50_crtc_mode_fixup,
	.mode_set = nv50_crtc_mode_set,
	.mode_set_base = nv50_crtc_mode_set_base,
	.mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
	.load_lut = nv50_crtc_lut_load,
1251 1252
};

1253 1254 1255 1256
static const struct drm_crtc_funcs nv50_crtc_func = {
	.cursor_set = nv50_crtc_cursor_set,
	.cursor_move = nv50_crtc_cursor_move,
	.gamma_set = nv50_crtc_gamma_set,
1257
	.set_config = drm_crtc_helper_set_config,
1258
	.destroy = nv50_crtc_destroy,
1259
	.page_flip = nouveau_crtc_page_flip,
1260 1261
};

1262
static void
1263
nv50_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
1264 1265 1266 1267
{
}

static void
1268
nv50_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
1269 1270 1271
{
}

1272
static int
1273
nv50_crtc_create(struct drm_device *dev, struct nouveau_object *core, int index)
1274
{
1275 1276
	struct nv50_disp *disp = nv50_disp(dev);
	struct nv50_head *head;
1277 1278 1279
	struct drm_crtc *crtc;
	int ret, i;

1280 1281
	head = kzalloc(sizeof(*head), GFP_KERNEL);
	if (!head)
1282 1283
		return -ENOMEM;

1284
	head->base.index = index;
1285 1286 1287
	head->base.set_dither = nv50_crtc_set_dither;
	head->base.set_scale = nv50_crtc_set_scale;
	head->base.set_color_vibrance = nv50_crtc_set_color_vibrance;
1288 1289
	head->base.color_vibrance = 50;
	head->base.vibrant_hue = 0;
1290 1291
	head->base.cursor.set_offset = nv50_cursor_set_offset;
	head->base.cursor.set_pos = nv50_cursor_set_pos;
1292
	for (i = 0; i < 256; i++) {
1293 1294 1295
		head->base.lut.r[i] = i << 8;
		head->base.lut.g[i] = i << 8;
		head->base.lut.b[i] = i << 8;
1296 1297
	}

1298
	crtc = &head->base.base;
1299 1300
	drm_crtc_init(dev, crtc, &nv50_crtc_func);
	drm_crtc_helper_add(crtc, &nv50_crtc_hfunc);
1301 1302
	drm_mode_crtc_set_gamma_size(crtc, 256);

1303 1304 1305 1306
	ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
			     0, 0x0000, NULL, &head->base.lut.nvbo);
	if (!ret) {
		ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM);
1307
		if (!ret) {
1308
			ret = nouveau_bo_map(head->base.lut.nvbo);
1309 1310 1311
			if (ret)
				nouveau_bo_unpin(head->base.lut.nvbo);
		}
1312 1313 1314 1315 1316 1317 1318
		if (ret)
			nouveau_bo_ref(NULL, &head->base.lut.nvbo);
	}

	if (ret)
		goto out;

1319
	nv50_crtc_lut_load(crtc);
1320 1321

	/* allocate cursor resources */
1322
	ret = nv50_pioc_create(disp->core, NV50_DISP_CURS_CLASS, index,
1323 1324 1325 1326 1327 1328 1329
			      &(struct nv50_display_curs_class) {
					.head = index,
			      }, sizeof(struct nv50_display_curs_class),
			      &head->curs.base);
	if (ret)
		goto out;

1330
	ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
1331
			     0, 0x0000, NULL, &head->base.cursor.nvbo);
1332
	if (!ret) {
1333
		ret = nouveau_bo_pin(head->base.cursor.nvbo, TTM_PL_FLAG_VRAM);
1334
		if (!ret) {
1335
			ret = nouveau_bo_map(head->base.cursor.nvbo);
1336 1337 1338
			if (ret)
				nouveau_bo_unpin(head->base.lut.nvbo);
		}
1339
		if (ret)
1340
			nouveau_bo_ref(NULL, &head->base.cursor.nvbo);
1341 1342 1343 1344 1345
	}

	if (ret)
		goto out;

1346
	/* allocate page flip / sync resources */
1347
	ret = nv50_dmac_create(disp->core, NV50_DISP_SYNC_CLASS, index,
1348 1349 1350 1351 1352 1353 1354 1355 1356
			      &(struct nv50_display_sync_class) {
					.pushbuf = EVO_PUSH_HANDLE(SYNC, index),
					.head = index,
			      }, sizeof(struct nv50_display_sync_class),
			      disp->sync->bo.offset, &head->sync.base);
	if (ret)
		goto out;

	head->sync.sem.offset = EVO_SYNC(1 + index, 0x00);
1357

1358
	/* allocate overlay resources */
1359
	ret = nv50_pioc_create(disp->core, NV50_DISP_OIMM_CLASS, index,
1360 1361 1362 1363
			      &(struct nv50_display_oimm_class) {
					.head = index,
			      }, sizeof(struct nv50_display_oimm_class),
			      &head->oimm.base);
1364 1365 1366
	if (ret)
		goto out;

1367
	ret = nv50_dmac_create(disp->core, NV50_DISP_OVLY_CLASS, index,
1368 1369 1370 1371 1372 1373 1374
			      &(struct nv50_display_ovly_class) {
					.pushbuf = EVO_PUSH_HANDLE(OVLY, index),
					.head = index,
			      }, sizeof(struct nv50_display_ovly_class),
			      disp->sync->bo.offset, &head->ovly.base);
	if (ret)
		goto out;
1375 1376 1377

out:
	if (ret)
1378
		nv50_crtc_destroy(crtc);
1379 1380 1381
	return ret;
}

1382 1383 1384
/******************************************************************************
 * DAC
 *****************************************************************************/
B
Ben Skeggs 已提交
1385
static void
1386
nv50_dac_dpms(struct drm_encoder *encoder, int mode)
B
Ben Skeggs 已提交
1387 1388
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1389
	struct nv50_disp *disp = nv50_disp(encoder->dev);
B
Ben Skeggs 已提交
1390 1391 1392
	int or = nv_encoder->or;
	u32 dpms_ctrl;

1393
	dpms_ctrl = 0x00000000;
B
Ben Skeggs 已提交
1394 1395 1396 1397 1398
	if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000001;
	if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000004;

1399
	nv_call(disp->core, NV50_DISP_DAC_PWR + or, dpms_ctrl);
B
Ben Skeggs 已提交
1400 1401 1402
}

static bool
1403
nv50_dac_mode_fixup(struct drm_encoder *encoder,
1404
		    const struct drm_display_mode *mode,
B
Ben Skeggs 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

static void
1423
nv50_dac_commit(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1424 1425 1426 1427
{
}

static void
1428
nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
B
Ben Skeggs 已提交
1429 1430
		  struct drm_display_mode *adjusted_mode)
{
1431
	struct nv50_mast *mast = nv50_mast(encoder->dev);
B
Ben Skeggs 已提交
1432 1433
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1434
	u32 *push;
B
Ben Skeggs 已提交
1435

1436
	nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON);
B
Ben Skeggs 已提交
1437

1438
	push = evo_wait(mast, 8);
B
Ben Skeggs 已提交
1439
	if (push) {
1440
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
			u32 syncs = 0x00000000;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000001;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000002;

			evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
			evo_data(push, 1 << nv_crtc->index);
			evo_data(push, syncs);
		} else {
			u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
			u32 syncs = 0x00000001;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000008;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000010;

			if (mode->flags & DRM_MODE_FLAG_INTERLACE)
				magic |= 0x00000001;

			evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
			evo_data(push, syncs);
			evo_data(push, magic);
			evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
			evo_data(push, 1 << nv_crtc->index);
		}

		evo_kick(push, mast);
B
Ben Skeggs 已提交
1471 1472 1473 1474 1475 1476
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
1477
nv50_dac_disconnect(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1478 1479
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1480
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1481
	const int or = nv_encoder->or;
B
Ben Skeggs 已提交
1482 1483 1484
	u32 *push;

	if (nv_encoder->crtc) {
1485
		nv50_crtc_prepare(nv_encoder->crtc);
B
Ben Skeggs 已提交
1486

1487
		push = evo_wait(mast, 4);
B
Ben Skeggs 已提交
1488
		if (push) {
1489
			if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1490 1491 1492 1493 1494 1495 1496
				evo_mthd(push, 0x0400 + (or * 0x080), 1);
				evo_data(push, 0x00000000);
			} else {
				evo_mthd(push, 0x0180 + (or * 0x020), 1);
				evo_data(push, 0x00000000);
			}

B
Ben Skeggs 已提交
1497 1498
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
1499
			evo_kick(push, mast);
B
Ben Skeggs 已提交
1500 1501
		}
	}
1502 1503

	nv_encoder->crtc = NULL;
B
Ben Skeggs 已提交
1504 1505
}

1506
static enum drm_connector_status
1507
nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1508
{
1509
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1510
	int ret, or = nouveau_encoder(encoder)->or;
1511
	u32 load = 0;
B
Ben Skeggs 已提交
1512

1513 1514 1515
	ret = nv_exec(disp->core, NV50_DISP_DAC_LOAD + or, &load, sizeof(load));
	if (ret || load != 7)
		return connector_status_disconnected;
B
Ben Skeggs 已提交
1516

1517
	return connector_status_connected;
1518 1519
}

B
Ben Skeggs 已提交
1520
static void
1521
nv50_dac_destroy(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1522 1523 1524 1525 1526
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

1527 1528 1529 1530 1531 1532 1533 1534 1535
static const struct drm_encoder_helper_funcs nv50_dac_hfunc = {
	.dpms = nv50_dac_dpms,
	.mode_fixup = nv50_dac_mode_fixup,
	.prepare = nv50_dac_disconnect,
	.commit = nv50_dac_commit,
	.mode_set = nv50_dac_mode_set,
	.disable = nv50_dac_disconnect,
	.get_crtc = nv50_display_crtc_get,
	.detect = nv50_dac_detect
B
Ben Skeggs 已提交
1536 1537
};

1538 1539
static const struct drm_encoder_funcs nv50_dac_func = {
	.destroy = nv50_dac_destroy,
B
Ben Skeggs 已提交
1540 1541 1542
};

static int
1543
nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
B
Ben Skeggs 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
{
	struct drm_device *dev = connector->dev;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
1558 1559
	drm_encoder_init(dev, encoder, &nv50_dac_func, DRM_MODE_ENCODER_DAC);
	drm_encoder_helper_add(encoder, &nv50_dac_hfunc);
B
Ben Skeggs 已提交
1560 1561 1562 1563

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
1564

1565 1566 1567 1568
/******************************************************************************
 * Audio
 *****************************************************************************/
static void
1569
nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1570 1571 1572
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;
1573
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1574 1575 1576 1577 1578 1579 1580

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (!drm_detect_monitor_audio(nv_connector->edid))
		return;

	drm_edid_to_eld(&nv_connector->base, nv_connector->edid);

1581 1582 1583
	nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or,
			    nv_connector->base.eld,
			    nv_connector->base.eld[2] * 4);
1584 1585 1586
}

static void
1587
nv50_audio_disconnect(struct drm_encoder *encoder)
1588 1589
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1590
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1591

1592
	nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or, NULL, 0);
1593 1594 1595 1596 1597 1598
}

/******************************************************************************
 * HDMI
 *****************************************************************************/
static void
1599
nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1600
{
1601 1602 1603
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	struct nouveau_connector *nv_connector;
1604
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1605
	const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	u32 rekey = 56; /* binary driver, and tegra constant */
	u32 max_ac_packet;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (!drm_detect_hdmi_monitor(nv_connector->edid))
		return;

	max_ac_packet  = mode->htotal - mode->hdisplay;
	max_ac_packet -= rekey;
	max_ac_packet -= 18; /* constant from tegra */
	max_ac_packet /= 32;

1618 1619 1620
	nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff,
			    NV84_DISP_SOR_HDMI_PWR_STATE_ON |
			    (max_ac_packet << 16) | rekey);
B
Ben Skeggs 已提交
1621

1622
	nv50_audio_mode_set(encoder, mode);
1623 1624 1625
}

static void
1626
nv50_hdmi_disconnect(struct drm_encoder *encoder)
1627
{
1628 1629
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1630
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1631
	const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1632

1633
	nv50_audio_disconnect(encoder);
1634

1635
	nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff, 0x00000000);
1636 1637
}

1638 1639 1640
/******************************************************************************
 * SOR
 *****************************************************************************/
1641
static void
1642
nv50_sor_dpms(struct drm_encoder *encoder, int mode)
1643 1644 1645
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
1646
	struct nv50_disp *disp = nv50_disp(dev);
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	struct drm_encoder *partner;
	int or = nv_encoder->or;

	nv_encoder->last_dpms = mode;

	list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
		struct nouveau_encoder *nv_partner = nouveau_encoder(partner);

		if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
			continue;

		if (nv_partner != nv_encoder &&
1659
		    nv_partner->dcb->or == nv_encoder->dcb->or) {
1660 1661 1662 1663 1664 1665
			if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
				return;
			break;
		}
	}

1666
	nv_call(disp->core, NV50_DISP_SOR_PWR + or, (mode == DRM_MODE_DPMS_ON));
1667

1668 1669
	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
		nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, disp->core);
1670 1671 1672
}

static bool
1673
nv50_sor_mode_fixup(struct drm_encoder *encoder,
1674
		    const struct drm_display_mode *mode,
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

1692
static void
1693
nv50_sor_disconnect(struct drm_encoder *encoder)
1694 1695
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1696
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1697
	const int or = nv_encoder->or;
1698 1699 1700
	u32 *push;

	if (nv_encoder->crtc) {
1701
		nv50_crtc_prepare(nv_encoder->crtc);
1702

1703
		push = evo_wait(mast, 4);
1704
		if (push) {
1705
			if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1706 1707 1708 1709 1710 1711 1712
				evo_mthd(push, 0x0600 + (or * 0x40), 1);
				evo_data(push, 0x00000000);
			} else {
				evo_mthd(push, 0x0200 + (or * 0x20), 1);
				evo_data(push, 0x00000000);
			}

1713 1714
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
1715
			evo_kick(push, mast);
1716 1717
		}

1718
		nv50_hdmi_disconnect(encoder);
1719
	}
1720 1721 1722

	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
	nv_encoder->crtc = NULL;
1723 1724
}

1725
static void
1726
nv50_sor_prepare(struct drm_encoder *encoder)
1727
{
1728
	nv50_sor_disconnect(encoder);
1729
	if (nouveau_encoder(encoder)->dcb->type == DCB_OUTPUT_DP)
1730
		evo_sync(encoder->dev);
1731 1732 1733
}

static void
1734
nv50_sor_commit(struct drm_encoder *encoder)
1735 1736 1737 1738
{
}

static void
1739
nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1740
		  struct drm_display_mode *mode)
1741
{
1742 1743
	struct nv50_disp *disp = nv50_disp(encoder->dev);
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1744
	struct drm_device *dev = encoder->dev;
1745
	struct nouveau_drm *drm = nouveau_drm(dev);
1746 1747
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1748
	struct nouveau_connector *nv_connector;
1749
	struct nvbios *bios = &drm->vbios;
1750 1751 1752 1753
	u32 *push, lvds = 0;
	u8 owner = 1 << nv_crtc->index;
	u8 proto = 0xf;
	u8 depth = 0x0;
1754

1755 1756
	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	switch (nv_encoder->dcb->type) {
1757
	case DCB_OUTPUT_TMDS:
1758 1759
		if (nv_encoder->dcb->sorconf.link & 1) {
			if (mode->clock < 165000)
1760
				proto = 0x1;
1761
			else
1762
				proto = 0x5;
1763
		} else {
1764
			proto = 0x2;
1765 1766
		}

1767
		nv50_hdmi_mode_set(encoder, mode);
1768
		break;
1769
	case DCB_OUTPUT_LVDS:
1770 1771
		proto = 0x0;

1772 1773
		if (bios->fp_no_ddc) {
			if (bios->fp.dual_link)
1774
				lvds |= 0x0100;
1775
			if (bios->fp.if_is_24bit)
1776
				lvds |= 0x0200;
1777
		} else {
1778
			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1779
				if (((u8 *)nv_connector->edid)[121] == 2)
1780
					lvds |= 0x0100;
1781 1782
			} else
			if (mode->clock >= bios->fp.duallink_transition_clk) {
1783
				lvds |= 0x0100;
1784
			}
1785

1786
			if (lvds & 0x0100) {
1787
				if (bios->fp.strapless_is_24bit & 2)
1788
					lvds |= 0x0200;
1789 1790
			} else {
				if (bios->fp.strapless_is_24bit & 1)
1791
					lvds |= 0x0200;
1792 1793 1794
			}

			if (nv_connector->base.display_info.bpc == 8)
1795
				lvds |= 0x0200;
1796
		}
1797

1798
		nv_call(disp->core, NV50_DISP_SOR_LVDS_SCRIPT + nv_encoder->or, lvds);
1799
		break;
1800
	case DCB_OUTPUT_DP:
1801
		if (nv_connector->base.display_info.bpc == 6) {
1802
			nv_encoder->dp.datarate = mode->clock * 18 / 8;
1803
			depth = 0x2;
1804 1805
		} else
		if (nv_connector->base.display_info.bpc == 8) {
1806
			nv_encoder->dp.datarate = mode->clock * 24 / 8;
1807
			depth = 0x5;
1808 1809 1810
		} else {
			nv_encoder->dp.datarate = mode->clock * 30 / 8;
			depth = 0x6;
1811
		}
1812 1813

		if (nv_encoder->dcb->sorconf.link & 1)
1814
			proto = 0x8;
1815
		else
1816
			proto = 0x9;
1817
		break;
1818 1819 1820 1821
	default:
		BUG_ON(1);
		break;
	}
1822

1823
	nv50_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1824

1825
	push = evo_wait(nv50_mast(dev), 8);
1826
	if (push) {
1827
		if (nv50_vers(mast) < NVD0_DISP_CLASS) {
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
			evo_mthd(push, 0x0600 + (nv_encoder->or * 0x040), 1);
			evo_data(push, (depth << 16) | (proto << 8) | owner);
		} else {
			u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
			u32 syncs = 0x00000001;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000008;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000010;

			if (mode->flags & DRM_MODE_FLAG_INTERLACE)
				magic |= 0x00000001;

			evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
			evo_data(push, syncs | (depth << 6));
			evo_data(push, magic);
			evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 1);
			evo_data(push, owner | (proto << 8));
		}

		evo_kick(push, mast);
1850 1851 1852 1853 1854 1855
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
1856
nv50_sor_destroy(struct drm_encoder *encoder)
1857 1858 1859 1860 1861
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

1862 1863 1864 1865 1866 1867 1868 1869
static const struct drm_encoder_helper_funcs nv50_sor_hfunc = {
	.dpms = nv50_sor_dpms,
	.mode_fixup = nv50_sor_mode_fixup,
	.prepare = nv50_sor_prepare,
	.commit = nv50_sor_commit,
	.mode_set = nv50_sor_mode_set,
	.disable = nv50_sor_disconnect,
	.get_crtc = nv50_display_crtc_get,
1870 1871
};

1872 1873
static const struct drm_encoder_funcs nv50_sor_func = {
	.destroy = nv50_sor_destroy,
1874 1875 1876
};

static int
1877
nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
{
	struct drm_device *dev = connector->dev;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
1893 1894
	drm_encoder_init(dev, encoder, &nv50_sor_func, DRM_MODE_ENCODER_TMDS);
	drm_encoder_helper_add(encoder, &nv50_sor_hfunc);
1895 1896 1897 1898

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
1899 1900 1901 1902

/******************************************************************************
 * Init
 *****************************************************************************/
1903
void
1904
nv50_display_fini(struct drm_device *dev)
1905 1906 1907 1908
{
}

int
1909
nv50_display_init(struct drm_device *dev)
1910
{
1911
	u32 *push = evo_wait(nv50_mast(dev), 32);
1912 1913 1914
	if (push) {
		evo_mthd(push, 0x0088, 1);
		evo_data(push, NvEvoSync);
1915
		evo_kick(push, nv50_mast(dev));
1916
		return evo_sync(dev);
1917
	}
1918

1919
	return -EBUSY;
1920 1921 1922
}

void
1923
nv50_display_destroy(struct drm_device *dev)
1924
{
1925
	struct nv50_disp *disp = nv50_disp(dev);
1926

1927
	nv50_dmac_destroy(disp->core, &disp->mast.base);
1928

1929
	nouveau_bo_unmap(disp->sync);
1930 1931
	if (disp->sync)
		nouveau_bo_unpin(disp->sync);
1932
	nouveau_bo_ref(NULL, &disp->sync);
1933

1934
	nouveau_display(dev)->priv = NULL;
1935 1936 1937 1938
	kfree(disp);
}

int
1939
nv50_display_create(struct drm_device *dev)
1940
{
1941 1942 1943
	static const u16 oclass[] = {
		NVE0_DISP_CLASS,
		NVD0_DISP_CLASS,
1944 1945 1946 1947 1948
		NVA3_DISP_CLASS,
		NV94_DISP_CLASS,
		NVA0_DISP_CLASS,
		NV84_DISP_CLASS,
		NV50_DISP_CLASS,
1949
	};
1950 1951 1952
	struct nouveau_device *device = nouveau_dev(dev);
	struct nouveau_drm *drm = nouveau_drm(dev);
	struct dcb_table *dcb = &drm->vbios.dcb;
1953
	struct drm_connector *connector, *tmp;
1954
	struct nv50_disp *disp;
1955
	struct dcb_output *dcbe;
1956
	int crtcs, ret, i;
1957 1958 1959 1960

	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
	if (!disp)
		return -ENOMEM;
1961 1962

	nouveau_display(dev)->priv = disp;
1963 1964 1965
	nouveau_display(dev)->dtor = nv50_display_destroy;
	nouveau_display(dev)->init = nv50_display_init;
	nouveau_display(dev)->fini = nv50_display_fini;
1966

1967 1968 1969 1970 1971
	/* small shared memory area we use for notifiers and semaphores */
	ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
			     0, 0x0000, NULL, &disp->sync);
	if (!ret) {
		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
1972
		if (!ret) {
1973
			ret = nouveau_bo_map(disp->sync);
1974 1975 1976
			if (ret)
				nouveau_bo_unpin(disp->sync);
		}
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
		if (ret)
			nouveau_bo_ref(NULL, &disp->sync);
	}

	if (ret)
		goto out;

	/* attempt to allocate a supported evo display class */
	ret = -ENODEV;
	for (i = 0; ret && i < ARRAY_SIZE(oclass); i++) {
		ret = nouveau_object_new(nv_object(drm), NVDRM_DEVICE,
					 0xd1500000, oclass[i], NULL, 0,
					 &disp->core);
	}

	if (ret)
		goto out;

	/* allocate master evo channel */
1996
	ret = nv50_dmac_create(disp->core, NV50_DISP_MAST_CLASS, 0,
1997 1998 1999 2000 2001 2002 2003
			      &(struct nv50_display_mast_class) {
					.pushbuf = EVO_PUSH_HANDLE(MAST, 0),
			      }, sizeof(struct nv50_display_mast_class),
			      disp->sync->bo.offset, &disp->mast.base);
	if (ret)
		goto out;

2004
	/* create crtc objects to represent the hw heads */
2005 2006 2007 2008 2009
	if (nv_mclass(disp->core) >= NVD0_DISP_CLASS)
		crtcs = nv_rd32(device, 0x022448);
	else
		crtcs = 2;

2010
	for (i = 0; i < crtcs; i++) {
2011
		ret = nv50_crtc_create(dev, disp->core, i);
2012 2013 2014 2015
		if (ret)
			goto out;
	}

2016 2017 2018 2019 2020 2021 2022
	/* create encoder/connector objects based on VBIOS DCB table */
	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
		connector = nouveau_connector_create(dev, dcbe->connector);
		if (IS_ERR(connector))
			continue;

		if (dcbe->location != DCB_LOC_ON_CHIP) {
2023
			NV_WARN(drm, "skipping off-chip encoder %d/%d\n",
2024 2025 2026 2027 2028
				dcbe->type, ffs(dcbe->or) - 1);
			continue;
		}

		switch (dcbe->type) {
2029 2030 2031
		case DCB_OUTPUT_TMDS:
		case DCB_OUTPUT_LVDS:
		case DCB_OUTPUT_DP:
2032
			nv50_sor_create(connector, dcbe);
2033
			break;
2034
		case DCB_OUTPUT_ANALOG:
2035
			nv50_dac_create(connector, dcbe);
B
Ben Skeggs 已提交
2036
			break;
2037
		default:
2038
			NV_WARN(drm, "skipping unsupported encoder %d/%d\n",
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
				dcbe->type, ffs(dcbe->or) - 1);
			continue;
		}
	}

	/* cull any connectors we created that don't have an encoder */
	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
		if (connector->encoder_ids[0])
			continue;

2049
		NV_WARN(drm, "%s has no encoders, removing\n",
2050 2051 2052 2053
			drm_get_connector_name(connector));
		connector->funcs->destroy(connector);
	}

2054 2055
out:
	if (ret)
2056
		nv50_display_destroy(dev);
2057 2058
	return ret;
}