clk-cpu.c 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 * Author: Thomas Abraham <thomas.ab@samsung.com>
 *
 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
 * Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This file contains the utility function to register CPU clock for Samsung
 * Exynos platforms. A CPU clock is defined as a clock supplied to a CPU or a
 * group of CPUs. The CPU clock is typically derived from a hierarchy of clock
 * blocks which includes mux and divider blocks. There are a number of other
 * auxiliary clocks supplied to the CPU domain such as the debug blocks and AXI
 * clock for CPU domain. The rates of these auxiliary clocks are related to the
 * CPU clock rate and this relation is usually specified in the hardware manual
 * of the SoC or supplied after the SoC characterization.
 *
 * The below implementation of the CPU clock allows the rate changes of the CPU
 * clock and the corresponding rate changes of the auxillary clocks of the CPU
 * domain. The platform clock driver provides a clock register configuration
 * for each configurable rate which is then used to program the clock hardware
 * registers to acheive a fast co-oridinated rate change for all the CPU domain
 * clocks.
 *
 * On a rate change request for the CPU clock, the rate change is propagated
 * upto the PLL supplying the clock to the CPU domain clock blocks. While the
 * CPU domain PLL is reconfigured, the CPU domain clocks are driven using an
 * alternate clock source. If required, the alternate clock source is divided
 * down in order to keep the output clock rate within the previous OPP limits.
*/

#include <linux/errno.h>
36 37 38
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#include "clk-cpu.h"

#define E4210_SRC_CPU		0x0
#define E4210_STAT_CPU		0x200
#define E4210_DIV_CPU0		0x300
#define E4210_DIV_CPU1		0x304
#define E4210_DIV_STAT_CPU0	0x400
#define E4210_DIV_STAT_CPU1	0x404

#define E4210_DIV0_RATIO0_MASK	0x7
#define E4210_DIV1_HPM_MASK	(0x7 << 4)
#define E4210_DIV1_COPY_MASK	(0x7 << 0)
#define E4210_MUX_HPM_MASK	(1 << 20)
#define E4210_DIV0_ATB_SHIFT	16
#define E4210_DIV0_ATB_MASK	(DIV_MASK << E4210_DIV0_ATB_SHIFT)

#define MAX_DIV			8
#define DIV_MASK		7
#define DIV_MASK_ALL		0xffffffff
#define MUX_MASK		7

/*
 * Helper function to wait until divider(s) have stabilized after the divider
 * value has changed.
 */
static void wait_until_divider_stable(void __iomem *div_reg, unsigned long mask)
{
	unsigned long timeout = jiffies + msecs_to_jiffies(10);

	do {
		if (!(readl(div_reg) & mask))
			return;
	} while (time_before(jiffies, timeout));

	if (!(readl(div_reg) & mask))
		return;

	pr_err("%s: timeout in divider stablization\n", __func__);
}

/*
 * Helper function to wait until mux has stabilized after the mux selection
 * value was changed.
 */
static void wait_until_mux_stable(void __iomem *mux_reg, u32 mux_pos,
					unsigned long mux_value)
{
	unsigned long timeout = jiffies + msecs_to_jiffies(10);

	do {
		if (((readl(mux_reg) >> mux_pos) & MUX_MASK) == mux_value)
			return;
	} while (time_before(jiffies, timeout));

	if (((readl(mux_reg) >> mux_pos) & MUX_MASK) == mux_value)
		return;

	pr_err("%s: re-parenting mux timed-out\n", __func__);
}

/* common round rate callback useable for all types of CPU clocks */
static long exynos_cpuclk_round_rate(struct clk_hw *hw,
			unsigned long drate, unsigned long *prate)
{
103 104
	struct clk_hw *parent = clk_hw_get_parent(hw);
	*prate = clk_hw_round_rate(parent, drate);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	return *prate;
}

/* common recalc rate callback useable for all types of CPU clocks */
static unsigned long exynos_cpuclk_recalc_rate(struct clk_hw *hw,
			unsigned long parent_rate)
{
	/*
	 * The CPU clock output (armclk) rate is the same as its parent
	 * rate. Although there exist certain dividers inside the CPU
	 * clock block that could be used to divide the parent clock,
	 * the driver does not make use of them currently, except during
	 * frequency transitions.
	 */
	return parent_rate;
}

static const struct clk_ops exynos_cpuclk_clk_ops = {
	.recalc_rate = exynos_cpuclk_recalc_rate,
	.round_rate = exynos_cpuclk_round_rate,
};

/*
 * Helper function to set the 'safe' dividers for the CPU clock. The parameters
 * div and mask contain the divider value and the register bit mask of the
 * dividers to be programmed.
 */
static void exynos_set_safe_div(void __iomem *base, unsigned long div,
					unsigned long mask)
{
	unsigned long div0;

	div0 = readl(base + E4210_DIV_CPU0);
	div0 = (div0 & ~mask) | (div & mask);
	writel(div0, base + E4210_DIV_CPU0);
	wait_until_divider_stable(base + E4210_DIV_STAT_CPU0, mask);
}

/* handler for pre-rate change notification from parent clock */
static int exynos_cpuclk_pre_rate_change(struct clk_notifier_data *ndata,
			struct exynos_cpuclk *cpuclk, void __iomem *base)
{
	const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg;
	unsigned long alt_prate = clk_get_rate(cpuclk->alt_parent);
	unsigned long alt_div = 0, alt_div_mask = DIV_MASK;
	unsigned long div0, div1 = 0, mux_reg;

	/* find out the divider values to use for clock data */
	while ((cfg_data->prate * 1000) != ndata->new_rate) {
		if (cfg_data->prate == 0)
			return -EINVAL;
		cfg_data++;
	}

	spin_lock(cpuclk->lock);

	/*
	 * For the selected PLL clock frequency, get the pre-defined divider
	 * values. If the clock for sclk_hpm is not sourced from apll, then
	 * the values for DIV_COPY and DIV_HPM dividers need not be set.
	 */
	div0 = cfg_data->div0;
	if (test_bit(CLK_CPU_HAS_DIV1, &cpuclk->flags)) {
		div1 = cfg_data->div1;
		if (readl(base + E4210_SRC_CPU) & E4210_MUX_HPM_MASK)
			div1 = readl(base + E4210_DIV_CPU1) &
				(E4210_DIV1_HPM_MASK | E4210_DIV1_COPY_MASK);
	}

	/*
	 * If the old parent clock speed is less than the clock speed of
	 * the alternate parent, then it should be ensured that at no point
	 * the armclk speed is more than the old_prate until the dividers are
	 * set.  Also workaround the issue of the dividers being set to lower
	 * values before the parent clock speed is set to new lower speed
	 * (this can result in too high speed of armclk output clocks).
	 */
	if (alt_prate > ndata->old_rate || ndata->old_rate > ndata->new_rate) {
		unsigned long tmp_rate = min(ndata->old_rate, ndata->new_rate);

		alt_div = DIV_ROUND_UP(alt_prate, tmp_rate) - 1;
		WARN_ON(alt_div >= MAX_DIV);

		if (test_bit(CLK_CPU_NEEDS_DEBUG_ALT_DIV, &cpuclk->flags)) {
			/*
			 * In Exynos4210, ATB clock parent is also mout_core. So
			 * ATB clock also needs to be mantained at safe speed.
			 */
			alt_div |= E4210_DIV0_ATB_MASK;
			alt_div_mask |= E4210_DIV0_ATB_MASK;
		}
		exynos_set_safe_div(base, alt_div, alt_div_mask);
		div0 |= alt_div;
	}

	/* select sclk_mpll as the alternate parent */
	mux_reg = readl(base + E4210_SRC_CPU);
	writel(mux_reg | (1 << 16), base + E4210_SRC_CPU);
	wait_until_mux_stable(base + E4210_STAT_CPU, 16, 2);

	/* alternate parent is active now. set the dividers */
	writel(div0, base + E4210_DIV_CPU0);
	wait_until_divider_stable(base + E4210_DIV_STAT_CPU0, DIV_MASK_ALL);

	if (test_bit(CLK_CPU_HAS_DIV1, &cpuclk->flags)) {
		writel(div1, base + E4210_DIV_CPU1);
		wait_until_divider_stable(base + E4210_DIV_STAT_CPU1,
				DIV_MASK_ALL);
	}

	spin_unlock(cpuclk->lock);
	return 0;
}

/* handler for post-rate change notification from parent clock */
static int exynos_cpuclk_post_rate_change(struct clk_notifier_data *ndata,
			struct exynos_cpuclk *cpuclk, void __iomem *base)
{
	const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg;
	unsigned long div = 0, div_mask = DIV_MASK;
	unsigned long mux_reg;

	/* find out the divider values to use for clock data */
	if (test_bit(CLK_CPU_NEEDS_DEBUG_ALT_DIV, &cpuclk->flags)) {
		while ((cfg_data->prate * 1000) != ndata->new_rate) {
			if (cfg_data->prate == 0)
				return -EINVAL;
			cfg_data++;
		}
	}

	spin_lock(cpuclk->lock);

	/* select mout_apll as the alternate parent */
	mux_reg = readl(base + E4210_SRC_CPU);
	writel(mux_reg & ~(1 << 16), base + E4210_SRC_CPU);
	wait_until_mux_stable(base + E4210_STAT_CPU, 16, 1);

	if (test_bit(CLK_CPU_NEEDS_DEBUG_ALT_DIV, &cpuclk->flags)) {
		div |= (cfg_data->div0 & E4210_DIV0_ATB_MASK);
		div_mask |= E4210_DIV0_ATB_MASK;
	}

	exynos_set_safe_div(base, div, div_mask);
	spin_unlock(cpuclk->lock);
	return 0;
}

/*
 * This notifier function is called for the pre-rate and post-rate change
 * notifications of the parent clock of cpuclk.
 */
static int exynos_cpuclk_notifier_cb(struct notifier_block *nb,
				unsigned long event, void *data)
{
	struct clk_notifier_data *ndata = data;
	struct exynos_cpuclk *cpuclk;
	void __iomem *base;
	int err = 0;

	cpuclk = container_of(nb, struct exynos_cpuclk, clk_nb);
	base = cpuclk->ctrl_base;

	if (event == PRE_RATE_CHANGE)
		err = exynos_cpuclk_pre_rate_change(ndata, cpuclk, base);
	else if (event == POST_RATE_CHANGE)
		err = exynos_cpuclk_post_rate_change(ndata, cpuclk, base);

	return notifier_from_errno(err);
}

/* helper function to register a CPU clock */
int __init exynos_register_cpu_clock(struct samsung_clk_provider *ctx,
		unsigned int lookup_id, const char *name, const char *parent,
		const char *alt_parent, unsigned long offset,
		const struct exynos_cpuclk_cfg_data *cfg,
		unsigned long num_cfgs, unsigned long flags)
{
	struct exynos_cpuclk *cpuclk;
	struct clk_init_data init;
	struct clk *clk;
	int ret = 0;

	cpuclk = kzalloc(sizeof(*cpuclk), GFP_KERNEL);
	if (!cpuclk)
		return -ENOMEM;

	init.name = name;
	init.flags = CLK_SET_RATE_PARENT;
	init.parent_names = &parent;
	init.num_parents = 1;
	init.ops = &exynos_cpuclk_clk_ops;

	cpuclk->hw.init = &init;
	cpuclk->ctrl_base = ctx->reg_base + offset;
	cpuclk->lock = &ctx->lock;
	cpuclk->flags = flags;
	cpuclk->clk_nb.notifier_call = exynos_cpuclk_notifier_cb;

	cpuclk->alt_parent = __clk_lookup(alt_parent);
	if (!cpuclk->alt_parent) {
		pr_err("%s: could not lookup alternate parent %s\n",
				__func__, alt_parent);
		ret = -EINVAL;
		goto free_cpuclk;
	}

	clk = __clk_lookup(parent);
	if (!clk) {
		pr_err("%s: could not lookup parent clock %s\n",
				__func__, parent);
		ret = -EINVAL;
		goto free_cpuclk;
	}

	ret = clk_notifier_register(clk, &cpuclk->clk_nb);
	if (ret) {
		pr_err("%s: failed to register clock notifier for %s\n",
				__func__, name);
		goto free_cpuclk;
	}

	cpuclk->cfg = kmemdup(cfg, sizeof(*cfg) * num_cfgs, GFP_KERNEL);
	if (!cpuclk->cfg) {
		pr_err("%s: could not allocate memory for cpuclk data\n",
				__func__);
		ret = -ENOMEM;
		goto unregister_clk_nb;
	}

	clk = clk_register(NULL, &cpuclk->hw);
	if (IS_ERR(clk)) {
		pr_err("%s: could not register cpuclk %s\n", __func__,	name);
		ret = PTR_ERR(clk);
		goto free_cpuclk_data;
	}

	samsung_clk_add_lookup(ctx, clk, lookup_id);
	return 0;

free_cpuclk_data:
	kfree(cpuclk->cfg);
unregister_clk_nb:
	clk_notifier_unregister(__clk_lookup(parent), &cpuclk->clk_nb);
free_cpuclk:
	kfree(cpuclk);
	return ret;
}