gd32f4xx_spi.c 24.3 KB
Newer Older
T
tanek liang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
/*!
    \file  gd32f4xx_spi.c
    \brief SPI driver
*/

/*
    Copyright (C) 2016 GigaDevice

    2016-08-15, V1.0.1, firmware for GD32F4xx
*/

#include "gd32f4xx_spi.h"
#include "gd32f4xx_rcu.h"

#define SPI_INIT_MASK                   ((uint32_t)0x00003040U)
#define I2S_INIT_MASK                   ((uint32_t)0x0000F047U)
#define I2S_FULL_DUPLEX_MASK            ((uint32_t)0x0000F040U)

/*!
    \brief      SPI and I2S reset
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5),include I2S1_ADD and I2S2_ADD
    \param[out] none
    \retval     none
*/
void spi_i2s_deinit(uint32_t spi_periph)
{
    switch(spi_periph){
    case SPI0:
        /* reset SPI0 and I2S0 */
        rcu_periph_reset_enable(RCU_SPI0RST);
        rcu_periph_reset_disable(RCU_SPI0RST);
        break;
    case SPI1:
        /* reset SPI1,I2S1 and I2S1_ADD */
        rcu_periph_reset_enable(RCU_SPI1RST);
        rcu_periph_reset_disable(RCU_SPI1RST);
        break;
    case SPI2:
        /* reset SPI2,I2S2 and I2S2_ADD */
        rcu_periph_reset_enable(RCU_SPI2RST);
        rcu_periph_reset_disable(RCU_SPI2RST);
        break;
    case SPI3:
        /* reset SPI3 and I2S3 */
        rcu_periph_reset_enable(RCU_SPI3RST);
        rcu_periph_reset_disable(RCU_SPI3RST);
        break;
    case SPI4:
        /* reset SPI4 and I2S4 */
        rcu_periph_reset_enable(RCU_SPI4RST);
        rcu_periph_reset_disable(RCU_SPI4RST);
        break;
    case SPI5:
        /* reset SPI5 */
        rcu_periph_reset_enable(RCU_SPI5RST);
        rcu_periph_reset_disable(RCU_SPI5RST);
        break;
    default :
        break;
    }
}

/*!
    \brief      SPI parameter initialization
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  spi_struct: SPI parameter initialization stuct
                members of the structure and the member values are shown as below:
                  device_mode          : SPI_MASTER, SPI_SLAVE.
                  trans_mode           : SPI_TRANSMODE_FULLDUPLEX, SPI_TRANSMODE_RECEIVEONLY,
                                         SPI_TRANSMODE_BDRECEIVE, SPI_TRANSMODE_BDTRANSMIT
                  frame_size           : SPI_FRAMESIZE_16BIT, SPI_FRAMESIZE_8BIT
                  nss:                 : SPI_NSS_SOFT, SPI_NSS_HARD
                  endian               : SPI_ENDIAN_MSB, SPI_ENDIAN_LSB
                  clock_polarity_phase : SPI_CK_PL_LOW_PH_1EDGE, SPI_CK_PL_HIGH_PH_1EDGE
                                         SPI_CK_PL_LOW_PH_2EDGE, SPI_CK_PL_HIGH_PH_2EDGE
                  prescale             : SPI_PSC_n (n=2,4,8,16,32,64,128,256)
    \param[out] none
    \retval     none
*/
void spi_init(uint32_t spi_periph, spi_parameter_struct* spi_struct)
{   
    uint32_t reg = 0U;
    reg = SPI_CTL0(spi_periph);
    reg &= SPI_INIT_MASK;

    /* (1) select SPI as master or slave */
    reg |= spi_struct->device_mode;
    /* (2) select SPI transfer mode */
    reg |= spi_struct->trans_mode;
    /* (3) select SPI frame size */
    reg |= spi_struct->frame_size;
    /* (4) select SPI nss use hardware or software */
    reg |= spi_struct->nss;
    /* (5) select SPI LSB or MSB */
    reg |= spi_struct->endian;
    /* (6) select SPI polarity and phase */
    reg |= spi_struct->clock_polarity_phase;
    /* (7) select SPI prescale to adjust transmit speed */
    reg |= spi_struct->prescale;

    /* write to SPI_CTL0 register */
    SPI_CTL0(spi_periph) = (uint32_t)reg;

    SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SSEL);
}

/*!
    \brief      SPI enable
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_enable(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SPIEN;
}

/*!
    \brief      SPI disable
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_disable(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SPIEN);
}

/*!
    \brief      I2S prescale config
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4)
    \param[in]  audiosample:
      \arg        I2S_AUDIOSAMPLE_8K: audio sample rate is 8khz
      \arg        I2S_AUDIOSAMPLE_11K: audio sample rate is 11khz
      \arg        I2S_AUDIOSAMPLE_16K: audio sample rate is 16khz
      \arg        I2S_AUDIOSAMPLE_22K: audio sample rate is 22khz
      \arg        I2S_AUDIOSAMPLE_32K: audio sample rate is 32khz
      \arg        I2S_AUDIOSAMPLE_44K: audio sample rate is 44khz
      \arg        I2S_AUDIOSAMPLE_48K: audio sample rate is 48khz
      \arg        I2S_AUDIOSAMPLE_96K: audio sample rate is 96khz
      \arg        I2S_AUDIOSAMPLE_192K: audio sample rate is 192khz
    \param[in]  frameformat:
      \arg        I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
      \arg        I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
      \arg        I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
      \arg        I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
    \param[in]  mckout:
      \arg        I2S_MCKOUT_ENABLE: I2S master clock output enable
      \arg        I2S_MCKOUT_DISABLE: I2S master clock output disable
    \param[out] none
    \retval     none
*/
void i2s_psc_config(uint32_t spi_periph, uint32_t i2s_audiosample, uint32_t i2s_frameformat, uint32_t i2s_mckout)
{
    uint32_t temp_div = 2U, temp_of = 0U;
    uint32_t temp = 0U;
    uint32_t i2sclock = 0U;

#ifndef I2S_EXTERNAL_CLOCK_IN
  uint32_t plli2sm = 0U, plli2sn = 0U, plli2sr = 0U;
#endif /* I2S_EXTERNAL_CLOCK_IN */

    /* deinit SPI_I2SPSC register */
    SPI_I2SPSC(spi_periph) = 0x0002U;

#ifdef I2S_EXTERNAL_CLOCK_IN
    rcu_i2s_clock_config(RCU_I2SSRC_I2S_CKIN);

    /* set the I2S clock to the external clock input value */
    i2sclock = I2S_EXTERNAL_CLOCK_IN;
#else

    /* turn on the oscillator HXTAL */
    rcu_osci_on(RCU_HXTAL);
    /* wait for oscillator stabilization flags is SET */
    rcu_osci_stab_wait(RCU_HXTAL);
    /* turn on the PLLI2S */
    rcu_osci_on(RCU_PLLI2S_CK);
    /* wait for PLLI2S flags is SET */
    rcu_osci_stab_wait(RCU_PLLI2S_CK);
    /* configure the I2S clock source selection */
    rcu_i2s_clock_config(RCU_I2SSRC_PLLI2S);

    /* get the RCU_PLL_PLLPSC value */
    plli2sm = (uint32_t)(RCU_PLL & RCU_PLL_PLLPSC);
    /* get the RCU_PLLI2S_PLLI2SN value */
    plli2sn = (uint32_t)((RCU_PLLI2S & RCU_PLLI2S_PLLI2SN) >> 6);
    /* get the RCU_PLLI2S_PLLI2SR value */
    plli2sr = (uint32_t)((RCU_PLLI2S & RCU_PLLI2S_PLLI2SR) >> 28);

    if((RCU_PLL & RCU_PLL_PLLSEL) == RCU_PLLSRC_HXTAL)
    {
      /* get the I2S source clock value */
      i2sclock = (uint32_t)(((HXTAL_VALUE / plli2sm) * plli2sn) / plli2sr);
    }
    else
    { /* get the I2S source clock value */
      i2sclock = (uint32_t)(((IRC16M_VALUE / plli2sm) * plli2sn) / plli2sr);
    }
#endif /* I2S_EXTERNAL_CLOCK_IN */

    /* config the prescaler depending on the mclk output state, the frame format and audio sample rate */
    if(I2S_MCKOUT_ENABLE == i2s_mckout){
        temp = (uint32_t)(((i2sclock / 256U) * 10U) / i2s_audiosample);
    }else{
        if(I2S_FRAMEFORMAT_DT16B_CH16B == i2s_frameformat){
            temp = (uint32_t)(((i2sclock / 32U) *10U ) / i2s_audiosample);
        }else{
            temp = (uint32_t)(((i2sclock / 64U) *10U ) / i2s_audiosample);
        }
    }
    /* remove the floating point */
    temp = (temp + 5U) / 10U;
    temp_of = (temp & 0x00000001U);
    temp_div = ((temp - temp_of) / 2U);
    temp_of = (temp_of << 8);

    /* set the default values */
    if((temp_div< 2U) || (temp_div > 255U)){
        temp_div = 2U;
        temp_of = 0U;
    }

    /* configure SPI_I2SPSC */
    SPI_I2SPSC(spi_periph) = (uint32_t)(temp_div | temp_of | i2s_mckout);

    /* clear SPI_I2SCTL_DTLEN and SPI_I2SCTL_CHLEN bits */
    SPI_I2SCTL(spi_periph) &= (uint32_t)(~(SPI_I2SCTL_DTLEN|SPI_I2SCTL_CHLEN));
    /* configure data frame format */
    SPI_I2SCTL(spi_periph) |= (uint32_t)i2s_frameformat;
}

/*!
    \brief      I2S parameter configuration
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4)
    \param[in]  i2s_mode: 
      \arg        I2S_MODE_SLAVETX : I2S slave transmit mode
      \arg        I2S_MODE_SLAVERX : I2S slave receive mode
      \arg        I2S_MODE_MASTERTX : I2S master transmit mode
      \arg        I2S_MODE_MASTERRX : I2S master receive mode
    \param[in]  i2s_std: 
      \arg        I2S_STD_PHILLIPS : I2S phillips standard
      \arg        I2S_STD_MSB : I2S MSB standard
      \arg        I2S_STD_LSB : I2S LSB standard
      \arg        I2S_STD_PCMSHORT : I2S PCM short standard
      \arg        I2S_STD_PCMLONG : I2S PCM long standard
    \param[in]  i2s_ckpl: 
      \arg        I2S_CKPL_LOW : I2S clock polarity low level
      \arg        I2S_CKPL_HIGH : I2S clock polarity high level
    \param[out] none
    \retval     none
*/
void i2s_init(uint32_t spi_periph, uint32_t i2s_mode, uint32_t i2s_standard, uint32_t i2s_ckpl)
{
    uint32_t reg= 0U;
    reg = SPI_I2SCTL(spi_periph);
    reg &= I2S_INIT_MASK;

    /* enable I2S mode */
    reg |= (uint32_t)SPI_I2SCTL_I2SSEL; 
    /* select I2S mode */
    reg |= (uint32_t)i2s_mode;
    /* select I2S standard */
    reg |= (uint32_t)i2s_standard;
    /* select I2S polarity */
    reg |= (uint32_t)i2s_ckpl;

    /* write to SPI_I2SCTL register */
    SPI_I2SCTL(spi_periph) = (uint32_t)reg;
}

/*!
    \brief      I2S enable
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4)
    \param[out] none
    \retval     none
*/
void i2s_enable(uint32_t spi_periph)
{
    SPI_I2SCTL(spi_periph) |= (uint32_t)SPI_I2SCTL_I2SEN;
}

/*!
    \brief      I2S disable
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4)
    \param[out] none
    \retval     none
*/
void i2s_disable(uint32_t spi_periph)
{
    SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SEN);
}

/*!
    \brief      SPI nss output enable
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_nss_output_enable(uint32_t spi_periph)
{
    SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSDRV;
}

/*!
    \brief      SPI nss output disable
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_nss_output_disable(uint32_t spi_periph)
{
    SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSDRV);
}

/*!
    \brief      SPI nss pin high level in software mode
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_nss_internal_high(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SWNSS;
}

/*!
    \brief      SPI nss pin low level in software mode
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_nss_internal_low(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SWNSS);
}

/*!
    \brief      SPI dma send or receive enable
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  spi_dma: 
      \arg        SPI_DMA_TRANSMIT: enable DMA transmit
      \arg        SPI_DMA_RECEIVE: enable DMA receive
    \param[out] none
    \retval     none
*/
void spi_dma_enable(uint32_t spi_periph, uint8_t spi_dma)
{
    if(SPI_DMA_TRANSMIT == spi_dma){
        SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMATEN;
    }else{
        SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMAREN;
    }
}

/*!
    \brief      SPI dma send or receive diable
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  spi_dma: 
      \arg        SPI_DMA_TRANSMIT: disable DMA transmit
      \arg        SPI_DMA_RECEIVE: disable DMA receive
    \param[out] none
    \retval     none
*/
void spi_dma_disable(uint32_t spi_periph, uint8_t spi_dma)
{
    if(SPI_DMA_TRANSMIT == spi_dma){
        SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMATEN);
    }else{
        SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMAREN);
    }
}

/*!
    \brief      configure SPI/I2S data frame format
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  frame_format: 
      \arg        SPI_FRAMESIZE_16BIT: SPI frame size is 16 bits
      \arg        SPI_FRAMESIZE_8BIT: SPI frame size is 8 bits
    \param[out] none
    \retval     none
*/
void spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t frame_format)
{
    /* clear SPI_CTL0_FF16 bit */
    SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_FF16);
    /* confige SPI_CTL0_FF16 bit */
    SPI_CTL0(spi_periph) |= (uint32_t)frame_format;
}

/*!
    \brief      SPI transmit data
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  data: 16-bit data
    \param[out] none
    \retval     none
*/
void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data)
{
    SPI_DATA(spi_periph) = (uint32_t)data;
}

/*!
    \brief      receive data
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     16-bit data
*/
uint16_t spi_i2s_data_receive(uint32_t spi_periph)
{
    return ((uint16_t)SPI_DATA(spi_periph));
}

/*!
    \brief      configure SPI bidirectional transfer direction
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  transfer_direction:
      \arg        SPI_BIDIRECTIONAL_TEANSMIT: SPI work in transmit-only mode
      \arg        SPI_BIDIRECTIONAL_RECEIVE: SPI work in receive-only mode
    \retval     none
*/
void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t transfer_direction)
{
    if(SPI_BIDIRECTIONAL_TEANSMIT == transfer_direction){
        /* set the transmit only mode */
        SPI_CTL0(spi_periph) |= (uint32_t)SPI_BIDIRECTIONAL_TEANSMIT;
    }else{
        /* set the receive only mode */
        SPI_CTL0(spi_periph) &= SPI_BIDIRECTIONAL_RECEIVE;
    }
}

/*!
    \brief      SPI and I2S interrupt enable
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  spi_i2s_int:
      \arg        SPI_I2S_INT_TBE: transmit buffer empty interrupt
      \arg        SPI_I2S_INT_RBNE: receive buffer not empty interrupt
      \arg        SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
                                   transmission underrun error and format error interrupt
    \param[out] none
    \retval     none
*/
void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t spi_i2s_int)
{
    switch(spi_i2s_int){
    case SPI_I2S_INT_TBE:
        SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TBEIE;
        break;
    case SPI_I2S_INT_RBNE:
        SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_RBNEIE;
        break;
    case SPI_I2S_INT_ERR:
        SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_ERRIE;
        break;
    default:
        break;
    }
}

/*!
    \brief      SPI and I2S interrupt disable
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  spi_i2s_int:
      \arg        SPI_I2S_INT_TBE: transmit buffer empty interrupt
      \arg        SPI_I2S_INT_RBNE: receive buffer not empty interrupt
      \arg        SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
                                   transmission underrun error and format error interrupt
    \param[out] none
    \retval     none
*/
void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t spi_i2s_int)
{
    switch(spi_i2s_int){
    case SPI_I2S_INT_TBE :
        SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TBEIE);
        break;
    case SPI_I2S_INT_RBNE :
        SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_RBNEIE);
        break;
    case SPI_I2S_INT_ERR :
        SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_ERRIE);
        break;
    default :
        break;
    }
}

/*!
    \brief      get interrupt flag status
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  spi_i2s_int:
      \arg        SPI_I2S_INT_TBE: transmit buffer empty interrupt
      \arg        SPI_I2S_INT_RBNE: receive buffer not empty interrupt
      \arg        SPI_I2S_INT_RXORERR: overrun interrupt
      \arg        SPI_INT_CONFERR: config error interrupt
      \arg        SPI_INT_CRCERR: CRC error interrupt
      \arg        I2S_INT_TXURERR: underrun error interrupt
      \arg        SPI_I2S_INT_FERR: format error interrupt
    \param[out] none
    \retval     FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t spi_i2s_int)
{
    uint32_t reg1 = SPI_STAT(spi_periph);
    uint32_t reg2 = SPI_CTL1(spi_periph);
    
    uint32_t temp1 = 0U;
    uint32_t temp2 = 0U;

    switch(spi_i2s_int){
    case SPI_I2S_INT_TBE :
        temp1 = reg1 & SPI_STAT_TBE;
        temp2 = reg2 & SPI_CTL1_TBEIE;
        break;
    case SPI_I2S_INT_RBNE :
        temp1 = reg1 & SPI_STAT_RBNE;
        temp2 = reg2 & SPI_CTL1_RBNEIE;
        break;
    case SPI_I2S_INT_RXORERR :
        temp1 = reg1 & SPI_STAT_RXORERR;
        temp2 = reg2 & SPI_CTL1_ERRIE;
        break;
    case SPI_INT_CONFERR :
        temp1 = reg1 & SPI_STAT_CONFERR;
        temp2 = reg2 & SPI_CTL1_ERRIE;
        break;
    case SPI_INT_CRCERR :
        temp1 = reg1 & SPI_STAT_CRCERR;
        temp2 = reg2 & SPI_CTL1_ERRIE;
        break;
    case I2S_INT_TXURERR :
        temp1 = reg1 & SPI_STAT_TXURERR;
        temp2 = reg2 & SPI_CTL1_ERRIE;
        break;
    case SPI_I2S_INT_FERR :
        temp1 = reg1 & SPI_STAT_FERR;
        temp2 = reg2 & SPI_CTL1_ERRIE;
        break;
    default :
        break;
    }

    if(temp1 && temp2){
        return SET;
    }else{
        return RESET;
    }
}

/*!
    \brief      get flag status
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  spi_i2s_flag:
      \arg        SPI_FLAG_TBE: transmit buffer empty flag
      \arg        SPI_FLAG_RBNE: receive buffer not empty flag
      \arg        SPI_FLAG_TRANS: transmit on-going flag
      \arg        SPI_FLAG_RXORERR: receive Overrun flag
      \arg        SPI_FLAG_CONFERR: mode config error flag
      \arg        SPI_FLAG_CRCERR: CRC error flag
      \arg        SPI_FLAG_FERR: format error interrupt flag
      \arg        I2S_FLAG_TBE: transmit buffer empty flag
      \arg        I2S_FLAG_RBNE: receive buffer not empty flag
      \arg        I2S_FLAG_TRANS: transmit on-going flag
      \arg        I2S_FLAG_RXORERR: overrun flag
      \arg        I2S_FLAG_TXURERR: underrun error flag
      \arg        I2S_FLAG_CH: channel side flag
      \arg        I2S_FLAG_FERR: format error interrupt flag
    \param[out] none
    \retval     FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t spi_i2s_flag)
{
    if(SPI_STAT(spi_periph) & spi_i2s_flag){
        return SET;
    }else{
        return RESET;
    }
}

/*!
    \brief      clear SPI CRC error flag status
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_crc_error_clear(uint32_t spi_periph)
{
    SPI_STAT(spi_periph) &= (uint32_t)(~SPI_FLAG_CRCERR);
}

/*!
    \brief      CRC function turn on
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_crc_on(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
}

/*!
    \brief      CRC function turn off
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_crc_off(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_CRCEN);
}

/*!
    \brief      CRC polynomial set
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  crc_poly: CRC polynomial value
    \param[out] none
    \retval     none
*/
void spi_crc_polynomial_set(uint32_t spi_periph,uint16_t crc_poly)
{
    /* enable SPI CRC */
    SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;

    /* set SPI CRC polynomial */
    SPI_CRCPOLY(spi_periph) = (uint32_t)crc_poly;
}

/*!
    \brief      get SPI CRC polynomial 
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     16-bit CRC polynomial
*/
uint16_t spi_crc_polynomial_get(uint32_t spi_periph)
{
    return ((uint16_t)SPI_CRCPOLY(spi_periph));
}

/*!
    \brief      SPI next data is CRC value
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_crc_next(uint32_t spi_periph)
{
    SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCNT;
}

/*!
    \brief      get SPI CRC send value or receive value
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[in]  spi_crc: 
      \arg        SPI_CRC_TX: get transmit crc value
      \arg        SPI_CRC_RX: get receive crc value
    \param[out] none
    \retval     16-bit CRC value
*/
uint16_t spi_crc_get(uint32_t spi_periph,uint8_t spi_crc)
{
    if(SPI_CRC_TX == spi_crc){
        return ((uint16_t)(SPI_TCRC(spi_periph)));
    }else{
        return ((uint16_t)(SPI_RCRC(spi_periph)));
    }
}

/*!
    \brief      enable SPI TI mode
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_ti_mode_enable(uint32_t spi_periph)
{
    SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TMOD;
}

/*!
    \brief      disable SPI TI mode
    \param[in]  spi_periph: SPIx(x=0,1,2,3,4,5)
    \param[out] none
    \retval     none
*/
void spi_ti_mode_disable(uint32_t spi_periph)
{
    SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TMOD);
}

/*!
    \brief      configure i2s full duplex mode
    \param[in]  i2s_add_periph: I2Sx_ADD(x=1,2)
    \param[in]  i2s_mode: 
      \arg        I2S_MODE_SLAVETX : I2S slave transmit mode
      \arg        I2S_MODE_SLAVERX : I2S slave receive mode
      \arg        I2S_MODE_MASTERTX : I2S master transmit mode
      \arg        I2S_MODE_MASTERRX : I2S master receive mode
    \param[in]  i2s_standard: 
      \arg        I2S_STD_PHILLIPS : I2S phillips standard
      \arg        I2S_STD_MSB : I2S MSB standard
      \arg        I2S_STD_LSB : I2S LSB standard
      \arg        I2S_STD_PCMSHORT : I2S PCM short standard
      \arg        I2S_STD_PCMLONG : I2S PCM long standard
    \param[in]  i2s_ckpl: 
      \arg        I2S_CKPL_LOW : I2S clock polarity low level
      \arg        I2S_CKPL_HIGH : I2S clock polarity high level
    \param[in]  i2s_frameformat:
      \arg        I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
      \arg        I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
      \arg        I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
      \arg        I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
    \param[out] none
    \retval     none
*/
void i2s_full_duplex_mode_config(uint32_t i2s_add_periph, uint32_t i2s_mode, uint32_t i2s_standard,
                                 uint32_t i2s_ckpl, uint32_t i2s_frameformat)
{
    uint32_t reg = 0U, tmp = 0U;

    reg = I2S_ADD_I2SCTL(i2s_add_periph);
    reg &= I2S_FULL_DUPLEX_MASK;  

    /* get the mode of the extra I2S module I2Sx_ADD */
    if((I2S_MODE_MASTERTX == i2s_mode) || (I2S_MODE_SLAVETX == i2s_mode)){
        tmp = I2S_MODE_SLAVERX;
    }else{
        tmp = I2S_MODE_SLAVETX;
    }

    /* enable I2S mode */
    reg |= (uint32_t)SPI_I2SCTL_I2SSEL; 
    /* select I2S mode */
    reg |= (uint32_t)tmp;
    /* select I2S standard */
    reg |= (uint32_t)i2s_standard;
    /* select I2S polarity */
    reg |= (uint32_t)i2s_ckpl;
    /* configure data frame format */
    reg |= (uint32_t)i2s_frameformat;

    /* write to SPI_I2SCTL register */
    I2S_ADD_I2SCTL(i2s_add_periph) = (uint32_t)reg;
}

/*!
    \brief      quad wire SPI enable 
    \param[in]  spi_periph: SPIx(only x=5)
    \param[out] none
    \retval     none
*/
void qspi_enable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QMOD;
}

/*!
    \brief      quad wire SPI disable
    \param[in]  spi_periph: SPIx(only x=5)
    \param[out] none
    \retval     none
*/
void qspi_disable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QMOD);
}

/*!
    \brief      quad wire SPI write enable
    \param[in]  spi_periph: SPIx(only x=5)
    \param[out] none
    \retval     none
*/
void qspi_write_enable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QRD);
}

/*!
    \brief      quad wire SPI read enable
    \param[in]  spi_periph: SPIx(only x=5)
    \param[out] none
    \retval     none
*/
void qspi_read_enable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QRD;
}

/*!
    \brief      SPI_IO2 and SPI_IO3 pin output enable
    \param[in]  spi_periph: SPIx(only x=5)
    \param[out] none
    \retval     none
*/
void qspi_io23_output_enable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_IO23_DRV;
}

 /*!
    \brief      SPI_IO2 and SPI_IO3 pin output disable
    \param[in]  spi_periph: SPIx(only x=5)
    \param[out] none
    \retval     none
*/
 void qspi_io23_output_disable(uint32_t spi_periph)
{
    SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_IO23_DRV);
}