提交 5dea3cdc 编写于 作者: T thread-liu

[update] stm32mp1-ev1 bsp drivers

上级 cf622e51
......@@ -22,8 +22,6 @@
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
#include "stpmic.h"
#include "rtconfig.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
......@@ -75,14 +73,7 @@ void HAL_MspInit(void)
/* System interrupt init*/
/* USER CODE BEGIN MspInit 1 */
if(IS_ENGINEERING_BOOT_MODE())
{
#if defined(BSP_USING_ADC) || defined(BSP_USING_DAC)
/* Configure PMIC */
BSP_PMIC_Init();
BSP_PMIC_InitRegulators();
#endif
}
/* USER CODE END MspInit 1 */
}
......
......@@ -15,6 +15,19 @@ menu "Onboard Peripheral Drivers"
select BSP_USING_UART4
default y
config BSP_USING_PMIC
bool "Enable PMIC"
select BSP_USING_I2C
select BSP_USING_I2C3
default y
config BSP_USING_NAND
bool "Enable FMC (MT29F8G08ABACAH4)"
select RT_USING_FMC
select RT_USING_MTD_NAND
select RT_MTD_NAND_DEBUG
default n
endmenu
menu "On-chip Peripheral Drivers"
......@@ -22,11 +35,6 @@ menu "On-chip Peripheral Drivers"
bool "Enable GPIO"
select RT_USING_PIN
default y
config BSP_USING_WWDG
bool "Enable WWDG"
select RT_USING_WWDG
default n
menuconfig BSP_USING_UART
bool "Enable UART"
......@@ -46,7 +54,7 @@ menu "On-chip Peripheral Drivers"
bool "Enable UART3 TX DMA"
depends on BSP_USING_UART3 && RT_SERIAL_USING_DMA
default n
config BSP_USING_UART4
bool "Enable UART4"
default y
......@@ -79,16 +87,6 @@ menu "On-chip Peripheral Drivers"
config BSP_USING_TIM17
bool "Enable TIM17"
default n
endif
menuconfig BSP_USING_LPTIM
bool "Enable lptimer"
default n
select RT_USING_LPTIMER
if BSP_USING_LPTIM
config BSP_USING_LPTIM1
bool "Enable LPTIM1"
default n
endif
menuconfig BSP_USING_PWM
......@@ -126,52 +124,84 @@ menu "On-chip Peripheral Drivers"
default n
endif
menuconfig BSP_USING_I2C1
bool "Enable I2C1 BUS (software simulation)"
menuconfig BSP_USING_I2C
bool "Enable I2C BUS (software simulation)"
select RT_USING_I2C
select RT_USING_I2C_BITOPS
select RT_USING_PIN
default n
if BSP_USING_I2C1
comment "Notice: PD7 --> 55; PG15 --> 111"
config BSP_I2C1_SCL_PIN
int "I2C1 scl pin number"
range 1 176
default 55
config BSP_I2C1_SDA_PIN
int "I2C1 sda pin number"
range 1 176
default 111
if BSP_USING_I2C
menuconfig BSP_USING_I2C1
bool "Enable I2C1 BUS (software simulation)"
default n
if BSP_USING_I2C1
comment "Notice: PD7 --> 55; PG15 --> 111"
config BSP_I2C1_SCL_PIN
int "I2C1 scl pin number"
range 1 176
default 55
config BSP_I2C1_SDA_PIN
int "I2C1 sda pin number"
range 1 176
default 111
endif
menuconfig BSP_USING_I2C2
bool "Enable I2C2 BUS (software simulation)"
default n
if BSP_USING_I2C2
comment "Notice: PH4 --> 116; PH5 --> 117"
config BSP_I2C2_SCL_PIN
int "i2c2 scl pin number"
range 1 176
default 116
config BSP_I2C2_SDA_PIN
int "I2C2 sda pin number"
range 1 176
default 117
endif
menuconfig BSP_USING_I2C3
bool "Enable I2C3 BUS (software simulation)"
default n
if BSP_USING_I2C3
comment "Notice: PZ4 --> 180; PZ5 --> 181"
config BSP_I2C3_SCL_PIN
int "i2c3 scl pin number"
range 1 191
default 180
config BSP_I2C3_SDA_PIN
int "I2C3 sda pin number"
range 1 191
default 181
endif
endif
menuconfig BSP_USING_SPI
bool "Enable SPI BUS"
select RT_USING_SPI
default n
if BSP_USING_SPI
if BSP_USING_SPI
config BSP_USING_SPI5
bool "Enable SPI5 BUS"
default n
default n
config BSP_SPI5_TX_USING_DMA
bool "Enable SPI5 TX DMA"
depends on BSP_USING_SPI5
default n
config BSP_SPI5_RX_USING_DMA
bool "Enable SPI5 RX DMA"
depends on BSP_USING_SPI5
select BSP_SPI5_TX_USING_DMA
default n
default n
endif
source "../libraries/HAL_Drivers/Kconfig"
endmenu
menu "Board extended module Drivers"
endmenu
endmenu
......@@ -13,19 +13,11 @@ CubeMX_Config/Common/System/system_stm32mp1xx.c
CubeMX_Config/CM4/Src/stm32mp1xx_hal_msp.c
''')
if GetDepend(['BSP_USING_ADC']):
src += Glob('ports/drv_hard_i2c.c')
src += Glob('ports/stpmic.c')
if GetDepend(['BSP_USING_PMIC']):
src += Glob('ports/drv_pmic.c')
if GetDepend(['BSP_USING_DAC']):
src += Glob('ports/drv_hard_i2c.c')
src += Glob('ports/stpmic.c')
if GetDepend(['BSP_USING_WWDG']):
src += Glob('ports/drv_wwdg.c')
if GetDepend(['BSP_USING_LPTIM']):
src += Glob('ports/drv_lptim.c')
if GetDepend(['BSP_USING_NAND']):
src += Glob('ports/drv_nand.c')
path = [cwd]
path += [cwd + '/CubeMX_Config/CM4/Inc']
......
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-06-18 thread-liu the first version
*/
#include <board.h>
#include "drv_hard_i2c.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.hardi2c"
#include <drv_log.h>
I2C_HandleTypeDef hI2c4;
int32_t BSP_I2C4_Init(void)
{
int32_t status = RT_EOK;
if (HAL_I2C_GetState(&hI2c4) == HAL_I2C_STATE_RESET)
{
if (MX_I2C4_Init(&hI2c4) != HAL_OK)
{
status = -RT_EBUSY;
}
/* Init the I2C Msp */
if (HAL_I2C_Init(&hI2c4) != HAL_OK)
{
LOG_D("I2C4 Init Error!\n");
status = -RT_EBUSY;
}
}
return status;
}
int32_t BSP_I2C4_DeInit(void)
{
int32_t status = RT_EOK;
HAL_I2C_MspDeInit(&hI2c4);
/* Init the I2C */
if (HAL_I2C_DeInit(&hI2c4) != HAL_OK)
{
status = -RT_EEMPTY;
}
return status;
}
HAL_StatusTypeDef MX_I2C4_Init(I2C_HandleTypeDef *hI2c)
{
hI2c4.Instance = I2C4;
hI2c->Init.Timing = I2C4_TIMING;
hI2c->Init.OwnAddress1 = STPMU1_I2C_ADDRESS;
hI2c->Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hI2c->Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hI2c->Init.OwnAddress2 = 0;
hI2c->Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hI2c->Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hI2c->Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
return HAL_I2C_Init(hI2c);
}
int32_t BSP_I2C4_WriteReg(uint16_t DevAddr, uint16_t Reg, uint8_t *pData, uint16_t Length)
{
return I2C4_WriteReg(DevAddr, Reg, I2C_MEMADD_SIZE_8BIT, pData, Length);
}
int32_t BSP_I2C4_ReadReg(uint16_t DevAddr, uint16_t Reg, uint8_t *pData, uint16_t Length)
{
return I2C4_ReadReg(DevAddr, Reg, I2C_MEMADD_SIZE_8BIT, pData, Length);
}
int32_t BSP_I2C4_WriteReg16(uint16_t DevAddr, uint16_t Reg, uint8_t *pData, uint16_t Length)
{
return I2C4_WriteReg(DevAddr, Reg, I2C_MEMADD_SIZE_16BIT, pData, Length);
}
int32_t BSP_I2C4_ReadReg16(uint16_t DevAddr, uint16_t Reg, uint8_t *pData, uint16_t Length)
{
return I2C4_ReadReg(DevAddr, Reg, I2C_MEMADD_SIZE_16BIT, pData, Length);
}
int32_t BSP_I2C4_IsReady(uint16_t DevAddr, uint32_t Trials)
{
int32_t status = RT_EOK;
if(HAL_I2C_IsDeviceReady(&hI2c4, DevAddr, Trials, 1000) != HAL_OK)
{
status = -RT_EBUSY;
}
return status;
}
static int32_t I2C4_WriteReg(uint16_t DevAddr, uint16_t Reg, uint16_t MemAddSize, uint8_t *pData, uint16_t Length)
{
int32_t status = -RT_EIO;
if(HAL_I2C_Mem_Write(&hI2c4, DevAddr, Reg, MemAddSize, pData, Length, 10000) == HAL_OK)
{
status = RT_EOK;
}
return status;
}
static int32_t I2C4_ReadReg(uint16_t DevAddr, uint16_t Reg, uint16_t MemAddSize, uint8_t *pData, uint16_t Length)
{
int32_t status = -RT_EIO;
if (HAL_I2C_Mem_Read(&hI2c4, DevAddr, Reg, MemAddSize, pData, Length, 10000) == HAL_OK)
{
status = RT_EOK;
}
return status;
}
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-06-18 thread-liu the first version
*/
#ifndef __DRV_HARD_I2C_H__
#define __DRV_HARD_I2C_H__
/* Includes ------------------------------------------------------------------*/
#include "stm32mp1xx_hal.h"
#ifdef __cplusplus
extern "C" {
#endif
#define STPMU1_I2C_ADDRESS ((0x33 & 0x7F) << 1)
#ifndef I2C_SPEED
#define I2C_SPEED ((uint32_t)100000)
#endif /* I2C_SPEED */
#ifndef I2C4_TIMING
#define I2C4_TIMING ((uint32_t)0x10805E89)
#endif
static int32_t I2C4_WriteReg(uint16_t DevAddr, uint16_t MemAddSize, uint16_t Reg, uint8_t *pData, uint16_t Length);
static int32_t I2C4_ReadReg(uint16_t DevAddr, uint16_t MemAddSize, uint16_t Reg, uint8_t *pData, uint16_t Length);
int32_t BSP_I2C4_Init(void);
int32_t BSP_I2C4_DeInit(void);
int32_t BSP_I2C4_WriteReg(uint16_t DevAddr, uint16_t Reg, uint8_t *pData, uint16_t Length);
int32_t BSP_I2C4_ReadReg(uint16_t DevAddr, uint16_t Reg, uint8_t *pData, uint16_t Length);
int32_t BSP_I2C4_WriteReg16(uint16_t DevAddr, uint16_t Reg, uint8_t *pData, uint16_t Length);
int32_t BSP_I2C4_ReadReg16(uint16_t DevAddr, uint16_t Reg, uint8_t *pData, uint16_t Length);
int32_t BSP_I2C4_IsReady(uint16_t DevAddr, uint32_t Trials);
HAL_StatusTypeDef MX_I2C4_Init(I2C_HandleTypeDef *hI2c);
#ifdef __cplusplus
}
#endif
#endif
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-06-19 thread-liu first version
*/
#include <board.h>
#ifdef BSP_USING_LPTIM
#include "drv_config.h"
#include <string.h>
#include <stdlib.h>
//#define DRV_DEBUG
#define LOG_TAG "drv.lptimer"
#include <drv_log.h>
LPTIM_HandleTypeDef hlptim1;
void LPTIM1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_LPTIM_IRQHandler(&hlptim1);
/* leave interrupt */
rt_interrupt_leave();
}
void HAL_LPTIM_AutoReloadMatchCallback(LPTIM_HandleTypeDef *hlptim)
{
if(hlptim->Instance == LPTIM1)
{
rt_kprintf("hello rt-thread!\n");
}
}
static int lptim_control(uint8_t pre_value)
{
if(pre_value > 7)
{
pre_value = 7;
}
hlptim1.Instance->CFGR &= ~(7 << 9); /* clear PRESC[2:0] */
hlptim1.Instance->CFGR |= pre_value << 9; /* set PRESC[2:0] */
return RT_EOK;
}
/**
* This function initialize the lptim
*/
static int lptim_init(void)
{
hlptim1.Instance = LPTIM1;
hlptim1.Init.Clock.Source = LPTIM_CLOCKSOURCE_APBCLOCK_LPOSC;
hlptim1.Init.Clock.Prescaler = LPTIM_PRESCALER_DIV1;
hlptim1.Init.UltraLowPowerClock.Polarity = LPTIM_CLOCKPOLARITY_RISING;
hlptim1.Init.UltraLowPowerClock.SampleTime = LPTIM_CLOCKSAMPLETIME_DIRECTTRANSITION;
hlptim1.Init.Trigger.Source = LPTIM_TRIGSOURCE_SOFTWARE;
hlptim1.Init.OutputPolarity = LPTIM_OUTPUTPOLARITY_HIGH;
hlptim1.Init.UpdateMode = LPTIM_UPDATE_IMMEDIATE;
hlptim1.Init.CounterSource = LPTIM_COUNTERSOURCE_INTERNAL;
hlptim1.Init.Input1Source = LPTIM_INPUT1SOURCE_GPIO;
hlptim1.Init.Input2Source = LPTIM_INPUT2SOURCE_GPIO;
if (HAL_LPTIM_Init(&hlptim1) != HAL_OK)
{
LOG_D("LPTIM Init Error!\n");
return -RT_ERROR;
}
/* ### Start counting in interrupt mode ############################# */
if (HAL_LPTIM_Counter_Start_IT(&hlptim1, 5000) != HAL_OK)
{
LOG_D("LPTIM Start Counting Error!\n");
return -RT_ERROR;
}
return RT_EOK;
}
static int lptim_deinit()
{
if (HAL_LPTIM_DeInit(&hlptim1) != HAL_OK)
{
LOG_D("LPTIM Deinit Error!\n");
return -RT_ERROR;
}
return RT_EOK;
}
static int lptim_sample(int argc, char *argv[])
{
if (argc > 1)
{
if (!strcmp(argv[1], "run"))
{
lptim_init();
}
else if (!strcmp(argv[1], "stop"))
{
lptim_deinit();
}
else if (!strcmp(argv[1], "set"))
{
if (argc > 2)
{
lptim_control(atoi(argv[2]));
}
}
}
else
{
rt_kprintf("Usage:\n");
rt_kprintf("lptim_sample run - open lptim, shell will printf 'hello rt-thread'\n");
rt_kprintf("lptim_sample set - set the lptim prescaler, lptim_sample set [0 - 7]\n");
}
return RT_EOK;
}
MSH_CMD_EXPORT(lptim_sample, low power timer sample);
#endif
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-06-30 thread-liu first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>
#ifdef BSP_USING_NAND
#define DRV_DEBUG
#define LOG_TAG "drv.nand"
#include <drv_log.h>
#include "drv_nand.h"
#define NAND_RB_PIN GET_PIN(D, 6)
static rt_uint32_t ecc_rdbuf[NAND_MAX_PAGE_SIZE/NAND_ECC_SECTOR_SIZE];
static rt_uint32_t ecc_hdbuf[NAND_MAX_PAGE_SIZE/NAND_ECC_SECTOR_SIZE];
struct rthw_fmc
{
rt_uint32_t id;
struct rt_mutex lock;
};
static struct rthw_fmc _device = {0};
static void rt_hw_nand_gpio_init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
if (IS_ENGINEERING_BOOT_MODE())
{
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_FMC;
PeriphClkInit.AdcClockSelection = RCC_FMCCLKSOURCE_ACLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
__HAL_RCC_FMC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
/* PD6 R/B */
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* PG9 NCE */
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF12_FMC;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/* PD0,1,4,5,11,12,14,15 */
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5 |
GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_14 | GPIO_PIN_15;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* PE7,8,9,10 */
GPIO_InitStruct.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
}
/* nand delay */
static void rt_hw_nand_delay(volatile uint32_t i)
{
while (i > 0)
{
i--;
}
}
/* read nand flash status */
static rt_err_t rt_hw_nand_read_status(void)
{
rt_err_t result = RT_EOK;
NAND_CMD_AREA = NAND_READSTA;
rt_hw_nand_delay(NAND_TWHR_DELAY);
result = NAND_ADDR_AREA;
return result;
}
/* wait nand flash read */
static rt_err_t rt_hw_nand_wait_ready(void)
{
rt_err_t result = RT_EOK;
static uint32_t time = 0;
while (1)
{
result = rt_hw_nand_read_status();
if (result & NAND_READY)
{
break;
}
time++;
if (time >= 0X1FFFFFFF)
{
return RT_ETIMEOUT;
}
}
return RT_EOK;
}
/* set nand mode */
static rt_err_t rt_hw_nand_set_mode(uint8_t mode)
{
NAND_CMD_AREA = NAND_FEATURE;
NAND_DATA_AREA = 0x01;
NAND_ADDR_AREA = mode;
NAND_ADDR_AREA = 0;
NAND_ADDR_AREA = 0;
NAND_ADDR_AREA = 0;
if (rt_hw_nand_wait_ready() == RT_EOK)
{
return RT_EOK;
}
else
{
return RT_ERROR;
}
}
/* reset nand flash */
static rt_err_t rt_hw_nand_reset(void)
{
NAND_CMD_AREA = NAND_RESET;
if (rt_hw_nand_wait_ready() == RT_EOK)
{
return RT_EOK; /* success */
}
else
{
return RT_ERROR;
}
}
/* read nand flash id */
static rt_err_t _read_id(struct rt_mtd_nand_device *device)
{
RT_ASSERT(device != RT_NULL);
uint8_t deviceid[5];
NAND_CMD_AREA = NAND_READID; /* read id command */
NAND_DATA_AREA = 0x00;
deviceid[0] = NAND_ADDR_AREA; /* Byte 0 */
deviceid[1] = NAND_ADDR_AREA; /* Byte 1 */
deviceid[2] = NAND_ADDR_AREA; /* Byte 2 */
deviceid[3] = NAND_ADDR_AREA; /* Byte 3 */
deviceid[4] = NAND_ADDR_AREA; /* Byte 4 */
_device.id = ((uint32_t)deviceid[4]) << 24 | ((uint32_t)deviceid[3]) << 16 | ((uint32_t)deviceid[2]) << 8 | deviceid[1];
LOG_D("nand id: 0x%08x", _device.id);
return RT_EOK;
}
static rt_uint8_t rt_hw_nand_ecc_check(rt_uint32_t generatedEcc, rt_uint32_t readEcc, rt_uint8_t* data)
{
#define ECC_MASK28 0x0FFFFFFF /* 28 valid ECC parity bits. */
#define ECC_MASK 0x05555555 /* 14 ECC parity bits. */
rt_uint32_t count, bitNum, byteAddr;
rt_uint32_t mask;
rt_uint32_t syndrome;
rt_uint32_t eccP; /* 14 even ECC parity bits. */
rt_uint32_t eccPn; /* 14 odd ECC parity bits. */
syndrome = (generatedEcc ^ readEcc) & ECC_MASK28;
if (syndrome == 0)
{
return (RT_EOK); /* No errors in data. */
}
eccPn = syndrome & ECC_MASK; /* Get 14 odd parity bits. */
eccP = (syndrome >> 1) & ECC_MASK; /* Get 14 even parity bits. */
if ((eccPn ^ eccP) == ECC_MASK) /* 1-bit correctable error ? */
{
bitNum = (eccP & 0x01) |
((eccP >> 1) & 0x02) |
((eccP >> 2) & 0x04);
LOG_D("ECC bit %d\n",bitNum);
byteAddr = ((eccP >> 6) & 0x001) |
((eccP >> 7) & 0x002) |
((eccP >> 8) & 0x004) |
((eccP >> 9) & 0x008) |
((eccP >> 10) & 0x010) |
((eccP >> 11) & 0x020) |
((eccP >> 12) & 0x040) |
((eccP >> 13) & 0x080) |
((eccP >> 14) & 0x100) |
((eccP >> 15) & 0x200) |
((eccP >> 16) & 0x400) ;
data[ byteAddr ] ^= 1 << bitNum;
return RT_EOK;
}
/* Count number of one's in the syndrome. */
count = 0;
mask = 0x00800000;
while (mask)
{
if (syndrome & mask)
count++;
mask >>= 1;
}
if (count == 1) /* Error in the ECC itself. */
return RT_EIO;
return RT_EIO; /* Unable to correct data. */
#undef ECC_MASK
#undef ECC_MASK24
}
static rt_err_t _read_page(struct rt_mtd_nand_device *device,
rt_off_t page,
rt_uint8_t *data,
rt_uint32_t data_len,
rt_uint8_t *spare,
rt_uint32_t spare_len)
{
RT_ASSERT(device != RT_NULL);
rt_uint32_t index, i, tickstart, eccnum;
rt_err_t result;
rt_uint8_t *p = RT_NULL;
page = page + device->block_start * device->pages_per_block;
if (page / device->pages_per_block > device->block_end)
{
return -RT_EIO;
}
rt_mutex_take(&_device.lock, RT_WAITING_FOREVER);
if (data && data_len)
{
NAND_CMD_AREA = NAND_AREA_A;
NAND_DATA_AREA = (rt_uint8_t)0;
NAND_DATA_AREA = (rt_uint8_t)(0 >> 8);
NAND_DATA_AREA = (rt_uint8_t)page;
NAND_DATA_AREA = (rt_uint8_t)(page >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page >> 16);
NAND_CMD_AREA = NAND_AREA_TRUE1;
rt_hw_nand_delay(10);
/* not an integer multiple of NAND ECC SECTOR SIZE, no ECC checks*/
if (data_len % NAND_ECC_SECTOR_SIZE)
{
for (i = 0; i < data_len; i++)
{
*data++ = NAND_ADDR_AREA;
}
}
else
{
eccnum = data_len/NAND_ECC_SECTOR_SIZE;
p = data;
for (index = 0; index < 4; index++)
{
FMC_Bank3_R->PCR |= 1<<6; /* enable ecc */
for (i = 0; i < NAND_ECC_SECTOR_SIZE; i++)
{
*data++ = NAND_ADDR_AREA;
}
/* Get tick */
tickstart = rt_tick_get();
/* Wait until FIFO is empty */
while ((FMC_Bank3_R->SR & (1 << 6)) == RESET)
{
/* Check for the Timeout */
if ((rt_tick_get() - tickstart) > 10000)
{
result = RT_ETIMEOUT;
goto _exit;
}
}
ecc_hdbuf[index] = FMC_Bank3_R->HECCR; /* read hardware ecc */
FMC_Bank3_R->PCR &= ~(1<<6); /* disable ecc */
}
i = device->page_size + 0x10;
rt_hw_nand_delay(10);
NAND_CMD_AREA = 0x05;
NAND_DATA_AREA = (rt_uint8_t)i;
NAND_DATA_AREA = (rt_uint8_t)(i>>8);
NAND_CMD_AREA = 0xE0;
rt_hw_nand_delay(10);
data =(rt_uint8_t*)&ecc_rdbuf[0];
for (i = 0; i < 4*eccnum; i++)
{
*data++ = NAND_ADDR_AREA;
}
/* check ecc */
for(i = 0; i< eccnum; i++)
{
if(ecc_rdbuf[i] != ecc_hdbuf[i])
{
result = rt_hw_nand_ecc_check(ecc_hdbuf[i], ecc_rdbuf[i], p + NAND_ECC_SECTOR_SIZE*i);
if (result != RT_EOK)
{
goto _exit;
}
}
}
}
}
if (spare && spare_len)
{
NAND_CMD_AREA = NAND_AREA_A;
NAND_DATA_AREA = (rt_uint8_t)0;
NAND_DATA_AREA = (rt_uint8_t)(0 >> 8);
NAND_DATA_AREA = (rt_uint8_t)page;
NAND_DATA_AREA = (rt_uint8_t)(page >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page >> 16);
NAND_CMD_AREA = NAND_AREA_TRUE1;
rt_thread_delay(10);
for (i = 0; i < spare_len; i ++)
{
*spare++ = NAND_ADDR_AREA;
}
}
if (rt_hw_nand_wait_ready() != RT_EOK)
{
result = RT_ETIMEOUT;
goto _exit;
}
_exit:
rt_mutex_release(&_device.lock);
return result;
}
static rt_err_t _write_page(struct rt_mtd_nand_device *device,
rt_off_t page,
const rt_uint8_t *data,
rt_uint32_t data_len,
const rt_uint8_t *spare,
rt_uint32_t spare_len)
{
RT_ASSERT(device != RT_NULL);
rt_err_t result = RT_EOK;
rt_uint32_t eccnum;
rt_uint32_t i, index;
rt_uint32_t tickstart = 0;
page = page + device->block_start * device->pages_per_block;
if (page / device->pages_per_block > device->block_end)
{
return -RT_EIO;
}
rt_mutex_take(&_device.lock, RT_WAITING_FOREVER);
if (data && data_len)
{
NAND_CMD_AREA = NAND_WRITE0;
NAND_DATA_AREA = (rt_uint8_t)0;
NAND_DATA_AREA = (rt_uint8_t)(0 >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page & 0xFF);
NAND_DATA_AREA = (rt_uint8_t)(page >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page >> 16);
rt_hw_nand_delay(10);
if (data_len % NAND_ECC_SECTOR_SIZE)
{
/* read nand flash */
for (i = 0; i < data_len; i++)
{
NAND_ADDR_AREA = *data++;
}
}
else
{
eccnum = data_len/NAND_ECC_SECTOR_SIZE;
for (index = 0; index < eccnum; index++)
{
FMC_Bank3_R->PCR |= 1<<6; /* enable ecc */
for (i = 0; i < NAND_ECC_SECTOR_SIZE; i++)
{
NAND_ADDR_AREA = *data++;
}
/* Get tick */
tickstart = rt_tick_get();
/* Wait until FIFO is empty */
while ((FMC_Bank3_R->SR & (1 << 6)) == RESET)
{
/* Check for the Timeout */
if ((rt_tick_get() - tickstart) > 10000)
{
result = RT_ETIMEOUT;
goto _exit;
}
}
ecc_hdbuf[index] = FMC_Bank3_R->HECCR; /* read hardware ecc */
FMC_Bank3_R->PCR &= ~(1<<6); /* disable ecc */
}
i = device->page_size + 0x10;
rt_hw_nand_delay(10);
NAND_CMD_AREA = 0x85;
NAND_DATA_AREA = (rt_uint8_t)i;
NAND_DATA_AREA = (rt_uint8_t)(i>>8);
rt_hw_nand_delay(10);
data = (uint8_t*)&ecc_hdbuf[0];
for (index = 0; index < eccnum; index++)
{
for (i = 0; i < 4; i++)
{
NAND_ADDR_AREA = *data++;
}
}
}
}
NAND_CMD_AREA = NAND_WRITE_TURE1;
if (rt_hw_nand_wait_ready() != RT_EOK)
{
result = -RT_EIO;
goto _exit;
}
if (spare && spare_len)
{
NAND_CMD_AREA = NAND_WRITE0;
NAND_DATA_AREA = (rt_uint8_t)(4096 & 0xFF);
NAND_DATA_AREA = (rt_uint8_t)(4096 >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page & 0xFF);
NAND_DATA_AREA = (rt_uint8_t)(page >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page >> 16);
for (i = 4; i < spare_len; i++)
{
NAND_ADDR_AREA = spare[i];
}
NAND_CMD_AREA = NAND_WRITE_TURE1;
if (rt_hw_nand_wait_ready() != RT_EOK)
{
result = -RT_EIO;
goto _exit;
}
}
_exit:
rt_mutex_release(&_device.lock);
return result;
}
/* erase one block */
static rt_err_t _erase_block(struct rt_mtd_nand_device *device, rt_uint32_t block)
{
RT_ASSERT(device != RT_NULL);
unsigned int block_num;
rt_err_t result = RT_EOK;
block = block + device->block_start;
block_num = block << 6;
rt_mutex_take(&_device.lock, RT_WAITING_FOREVER);
NAND_CMD_AREA = NAND_ERASE0;
NAND_DATA_AREA = (uint8_t)block_num;
NAND_DATA_AREA = (uint8_t)(block_num >> 8);
NAND_DATA_AREA = (uint8_t)(block_num >> 16);
NAND_CMD_AREA = NAND_ERASE1;
rt_thread_delay(NAND_TBERS_DELAY);
if (rt_hw_nand_wait_ready() != RT_EOK)
{
result = -RT_ERROR;
}
rt_mutex_release(&_device.lock);
return result;
}
static rt_err_t _page_copy(struct rt_mtd_nand_device *device,
rt_off_t src_page,
rt_off_t dst_page)
{
RT_ASSERT(device != RT_NULL);
rt_err_t result = RT_EOK;
rt_uint32_t source_block = 0, dest_block = 0;
src_page = src_page + device->block_start * device->pages_per_block;
dst_page = dst_page + device->block_start * device->pages_per_block;
source_block = src_page / device->pages_per_block;
dest_block = dst_page / device->pages_per_block;
if ((source_block % 2) != (dest_block % 2))
{
return RT_MTD_ESRC;
}
NAND_CMD_AREA = NAND_MOVEDATA_CMD0;
NAND_DATA_AREA = (rt_uint8_t)(0 & 0xFF);
NAND_DATA_AREA = (rt_uint8_t)(0 >> 8);
NAND_DATA_AREA = (rt_uint8_t)(src_page & 0xFF);
NAND_DATA_AREA = (rt_uint8_t)(src_page >> 8);
NAND_DATA_AREA = (rt_uint8_t)(src_page >> 16);
NAND_CMD_AREA = NAND_MOVEDATA_CMD1;
rt_hw_nand_delay(10);
NAND_CMD_AREA = NAND_MOVEDATA_CMD2;
NAND_DATA_AREA = ((rt_uint8_t)(0 & 0xFF));
NAND_DATA_AREA = ((rt_uint8_t)(0 >> 8));
NAND_DATA_AREA = ((rt_uint8_t)(dst_page & 0xFF));
NAND_DATA_AREA = ((rt_uint8_t)(dst_page >> 8));
NAND_DATA_AREA = ((rt_uint8_t)(dst_page >> 16));
NAND_CMD_AREA = (NAND_MOVEDATA_CMD3);
if (rt_hw_nand_wait_ready() != RT_EOK)
{
result = -RT_ERROR;
}
return result;
}
static rt_err_t _check_block(struct rt_mtd_nand_device *device, rt_uint32_t block)
{
RT_ASSERT(device != RT_NULL);
return (RT_MTD_EOK);
}
static rt_err_t _mark_bad(struct rt_mtd_nand_device *device, rt_uint32_t block)
{
RT_ASSERT(device != RT_NULL);
return (RT_MTD_EOK);
}
static const struct rt_mtd_nand_driver_ops ops =
{
_read_id,
_read_page,
_write_page,
_page_copy,
_erase_block,
_check_block,
_mark_bad,
};
static struct rt_mtd_nand_device nand_dev;
static rt_err_t nand_init(struct rt_mtd_nand_device *device)
{
RT_ASSERT(device != RT_NULL);
uint32_t tempreg = 0;
rt_hw_nand_gpio_init();
tempreg |= 0 << 1; /* disable Wait feature enable bit */
tempreg |= 0 << 4; /* Data bus width 8*/
tempreg |= 0 << 6; /* disable ECC */
tempreg |= 1 << 17; /* ECC page 512 BYTE */
tempreg |= 5 << 9; /* set TCLR */
tempreg |= 5 << 13; /* set TAR */
FMC_Bank3_R->PCR = tempreg; /* set nand control register */
tempreg &= 0;
tempreg |= 3 << 0; /* set MEMSET */
tempreg |= 5 << 8; /* set MEMWAIT */
tempreg |= 2 << 16; /* set MEMHOLD */
tempreg |= 3 << 24; /* set MEMHIZ */
FMC_Bank3_R->PMEM = tempreg;
FMC_Bank3_R->PATT = 0; /* Attribute memory space timing registers */
FMC_Bank3_R->PCR |= 1 << 2; /* NAND Flash memory bank enable bit */
FMC_Bank1_R->BTCR[0] |= (uint32_t)1 << 31; /* enable fmc */
rt_hw_nand_reset(); /* reset nand flash*/
rt_thread_delay(100);
/* read id */
_read_id(&nand_dev);
if (_device.id != MT29F8G08ABACAH4)
{
LOG_E("nand id 0x%08x not support", _device.id);
return RT_ERROR; /* can't find nand flash */
}
rt_hw_nand_set_mode(4); /* set mode 4, high speed mode*/
return RT_EOK;
}
int rt_hw_nand_init(void)
{
rt_err_t result = RT_EOK;
rt_pin_mode(NAND_RB_PIN, PIN_MODE_INPUT_PULLUP); /* nand flash R/B pin */
result = nand_init(&nand_dev);
if (result != RT_EOK)
{
LOG_D("nand flash init error!");
return RT_ERROR;
}
rt_mutex_init(&_device.lock, "nand", RT_IPC_FLAG_FIFO);
nand_dev.page_size = 4096;
nand_dev.pages_per_block = 224;
nand_dev.plane_num = 2;
nand_dev.oob_size = 64;
nand_dev.oob_free = 64 - ((4096) * 3 / 256);
nand_dev.block_start = 0;
nand_dev.block_end = 4095;
nand_dev.block_total = nand_dev.block_end - nand_dev.block_start;
nand_dev.ops = &ops;
result = rt_mtd_nand_register_device("nand", &nand_dev);
if (result != RT_EOK)
{
rt_device_unregister(&nand_dev.parent);
return RT_ERROR;
}
rt_kprintf("nand flash init success, id: 0x%08x\n", _device.id);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_nand_init);
#endif
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-00-30 thread-liu first version
*/
#ifndef __DRV_NAND_H__
#define __DRV_NAND_H__
#include "board.h"
#ifdef __cplusplus
extern "C"
{
#endif
#define NAND_MAX_PAGE_SIZE 4096
#define NAND_ECC_SECTOR_SIZE 512
#define NAND_TWHR_DELAY 25
#define NAND_TBERS_DELAY 4
#define MT29F8G08ABACAH4 0x64A690D3 /* id */
#define NAND_ADDR ((rt_uint32_t)0x80000000) /* nand base address */
#define NAND_ADDR_AREA (*(__IO rt_uint8_t *)NAND_ADDR)
#define NAND_CMD_AREA (*(__IO rt_uint8_t *)(NAND_ADDR | 1 << 16)) /* command */
#define NAND_DATA_AREA (*(__IO rt_uint8_t *)(NAND_ADDR | 1 << 17)) /* data */
/* nand flash command */
#define NAND_READID 0x90
#define NAND_FEATURE 0xEF
#define NAND_RESET 0xFF
#define NAND_READSTA 0x70
#define NAND_AREA_A 0x00
#define NAND_AREA_TRUE1 0x30
#define NAND_WRITE0 0x80
#define NAND_WRITE_TURE1 0x10
#define NAND_ERASE0 0x60
#define NAND_ERASE1 0xD0
#define NAND_MOVEDATA_CMD0 0x00
#define NAND_MOVEDATA_CMD1 0x35
#define NAND_MOVEDATA_CMD2 0x85
#define NAND_MOVEDATA_CMD3 0x10
/* nand flash status */
#define NAND_READY 0x40 /* read */
#define NAND_ECC1BITERR 0x03 /* ECC 1bit err */
#define NAND_ECC2BITERR 0x04 /* ECC 2bit or more err */
#ifdef __cplusplus
}
#endif
#endif
/**
******************************************************************************
* @file stm32mp15xx__stpmic1.h
* @file stm32mp15xx_eval_stpmic1.h
* @author MCD Application Team
* @brief stpmu driver functions used for ST internal validation
******************************************************************************
......@@ -25,80 +25,306 @@
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32mp1xx_hal.h"
/* Exported types ------------------------------------------------------------*/
typedef enum
{
STPMU1_BUCK1=1,
STPMU1_BUCK2,
STPMU1_BUCK3,
STPMU1_BUCK4,
STPMU1_LDO1,
STPMU1_LDO2,
STPMU1_LDO3,
STPMU1_LDO4,
STPMU1_LDO5,
STPMU1_LDO6,
STPMU1_VREFDDR,
STPMU1_BUCK1=1,
STPMU1_BUCK2,
STPMU1_BUCK3,
STPMU1_BUCK4,
STPMU1_LDO1,
STPMU1_LDO2,
STPMU1_LDO3,
STPMU1_LDO4,
STPMU1_LDO5,
STPMU1_LDO6,
STPMU1_VREFDDR,
}PMIC_RegulId_TypeDef;
/* IRQ definitions */
typedef enum {
/* Interrupt Register 1 (0x50 for latch) */
IT_SWOUT_R,
IT_SWOUT_F,
IT_VBUS_OTG_R,
IT_VBUS_OTG_F,
IT_WAKEUP_R,
IT_WAKEUP_F,
IT_PONKEY_R,
IT_PONKEY_F,
IT_SWOUT_R,
IT_SWOUT_F,
IT_VBUS_OTG_R,
IT_VBUS_OTG_F,
IT_WAKEUP_R,
IT_WAKEUP_F,
IT_PONKEY_R,
IT_PONKEY_F,
/* Interrupt Register 2 (0x51 for latch) */
IT_OVP_BOOST,
IT_OCP_BOOST,
IT_OCP_SWOUT,
IT_OCP_OTG,
IT_CURLIM_BUCK4,
IT_CURLIM_BUCK3,
IT_CURLIM_BUCK2,
IT_CURLIM_BUCK1,
IT_OVP_BOOST,
IT_OCP_BOOST,
IT_OCP_SWOUT,
IT_OCP_OTG,
IT_CURLIM_BUCK4,
IT_CURLIM_BUCK3,
IT_CURLIM_BUCK2,
IT_CURLIM_BUCK1,
/* Interrupt Register 3 (0x52 for latch) */
IT_SHORT_SWOUT,
IT_SHORT_SWOTG,
IT_CURLIM_LDO6,
IT_CURLIM_LDO5,
IT_CURLIM_LDO4,
IT_CURLIM_LDO3,
IT_CURLIM_LDO2,
IT_CURLIM_LDO1,
IT_SHORT_SWOUT,
IT_SHORT_SWOTG,
IT_CURLIM_LDO6,
IT_CURLIM_LDO5,
IT_CURLIM_LDO4,
IT_CURLIM_LDO3,
IT_CURLIM_LDO2,
IT_CURLIM_LDO1,
/* Interrupt Register 3 (0x52 for latch) */
IT_SWIN_R,
IT_SWIN_F,
IT_RESERVED_1,
IT_RESERVED_2,
IT_VINLOW_R,
IT_VINLOW_F,
IT_TWARN_R,
IT_TWARN_F,
IRQ_NR,
IT_SWIN_R,
IT_SWIN_F,
IT_RESERVED_1,
IT_RESERVED_2,
IT_VINLOW_R,
IT_VINLOW_F,
IT_TWARN_R,
IT_TWARN_F,
IRQ_NR,
} PMIC_IRQn;
/**
* @}
*/
/** @defgroup STM32MP15XX_EVAL_STPMU_Exported_Constants Exported Constants
* @{
*/
/* Exported constants --------------------------------------------------------*/
/* Private typedef -----------------------------------------------------------*/
typedef struct {
PMIC_RegulId_TypeDef id;
uint16_t *voltage_table;
uint8_t voltage_table_size;
uint8_t control_reg;
uint8_t low_power_reg;
uint8_t rank ;
uint8_t nvm_info ;
} regul_struct;
/* Those define should reflect NVM_USER section
* For ES Eval Configuration this is specified as
* 0xF7,
0x92,
0xC0,
0x02,
0xFA,
0x30,
0x00,
0x33,
* */
#define NVM_SECTOR3_REGISTER_0 0xF7
#define NVM_SECTOR3_REGISTER_1 0x92
#define NVM_SECTOR3_REGISTER_2 0xC0
#define NVM_SECTOR3_REGISTER_3 0x02
#define NVM_SECTOR3_REGISTER_4 0xFA
#define NVM_SECTOR3_REGISTER_5 0x30
#define NVM_SECTOR3_REGISTER_6 0x00
#define NVM_SECTOR3_REGISTER_7 0x33
/* nvm_vinok_hyst: VINOK hysteresis voltage
00: 200mV
01: 300mV
10: 400mV
11: 500mV
*
* nvm_vinok: VINOK threshold voltage
00: 3.1v
01: 3.3v
10: 3.5v
11: 4.5v
Otp_ldo4_forced :
0: LDO4 ranks following OTP_RANK_LDO4<1:0>
if VBUS_OTG or SWOUT is turn ON condition
1: LDO4 follows normal ranking procedure
nvm_longkeypress:
0: Turn OFF on long key press inactive
1: Turn OFF on long key press active
nvm_autoturnon:
0: PMIC does not start automatically on VIN rising
1: PMIC starts automatically on VIN rising
nvm_cc_keepoff :
0: short circuit does not turn OFF PMIC
1: short circuit turn OFF PMIC and keep it OFF till CC_flag is reset
*
*/
#define OTP_VINOK_HYST ((NVM_SECTOR3_REGISTER_0 & 0xC0) >> 6) // nvm_vinok_hyst
#define OTP_VINOK ((NVM_SECTOR3_REGISTER_0 & 0x30) >> 4) // nvm_vinok
#define OTP_LDO4_FORCED ((NVM_SECTOR3_REGISTER_0 & 0x08) >> 3) // Otp_ldo4_forced
#define OTP_LONGKEYPRESSED ((NVM_SECTOR3_REGISTER_0 & 0x04) >> 2) // nvm_longkeypress
#define OTP_AUTOTURNON ((NVM_SECTOR3_REGISTER_0 & 0x02) >> 1) // nvm_autoturnon
#define OTP_CC_KEEPOFF ((NVM_SECTOR3_REGISTER_0 & 0x01)) // nvm_cc_keepoff
/*
* nvm_rank_buck4:
00: rank0
01: rank1
10: rank2
11: rank3
nvm_rank_buck3:
00: rank0
01: rank1
10: rank2
11: rank3
nvm_rank_buck2:
00: rank0
01: rank1
10: rank2
11: rank3
nvm_rank_buck1:
00: rank0
01: rank1
10: rank2
11: rank3
*
*/
#define OTP_RANK_BUCK4 ((NVM_SECTOR3_REGISTER_1 & 0xC0) >> 6) // nvm_rank_buck4
#define OTP_RANK_BUCK3 ((NVM_SECTOR3_REGISTER_1 & 0x30) >> 4) // nvm_rank_buck3
#define OTP_RANK_BUCK2 ((NVM_SECTOR3_REGISTER_1 & 0x0C) >> 2) // nvm_rank_buck2
#define OTP_RANK_BUCK1 ((NVM_SECTOR3_REGISTER_1 & 0x03)) // nvm_rank_buck1
/*
* nvm_rank_ldo4:
00: rank0
01: rank1
10: rank2
11: rank3
nvm_rank_ldo3:
00: rank0
01: rank1
10: rank2
11: rank3
nvm_rank_ldo2:
00: rank0
01: rank1
10: rank2
11: rank3
nvm_rank_ldo1:
00: rank0
01: rank1
10: rank2
11: rank3
*
*/
#define OTP_RANK_LDO4 ((NVM_SECTOR3_REGISTER_2 & 0xC0) >> 6) // nvm_rank_ldo4
#define OTP_RANK_LDO3 ((NVM_SECTOR3_REGISTER_2 & 0x30) >> 4) // nvm_rank_ldo3
#define OTP_RANK_LDO2 ((NVM_SECTOR3_REGISTER_2 & 0x0C) >> 2) // nvm_rank_ldo2
#define OTP_RANK_LDO1 ((NVM_SECTOR3_REGISTER_2 & 0x03)) // nvm_rank_ldo1
/*
* nvm_clamp_output_buck: Clamp output value to 1.3V max
0: output_buck4<5:0> not clamped
1: output_buck4<5:0> to b011100(1.3V)
nvm_bypass_mode_ldo3: LDO3 forced bypass mode
0: LDO3 not in bypass mode
1: LDO3 in bypass mode
nvm_rank_vrefddr:
00: rank0
01: rank1
10: rank2
11: rank3
nvm_rank_ldo6:
00: rank0
01: rank1
10: rank2
11: rank3
nvm_rank_ldo5:
00: rank0
01: rank1
10: rank2
11: rank3
*
*/
#define OTP_CLAMP_OUTPUT_BUCK4 ((NVM_SECTOR3_REGISTER_3 & 0x80) >> 7) // nvm_clamp_output_buck4
#define OTP_BYPASS_MODE_LDO3 ((NVM_SECTOR3_REGISTER_3 & 0x40) >> 6) // nvm_bypass_mode_ldo3
#define OTP_RANK_VREFDDR ((NVM_SECTOR3_REGISTER_3 & 0x30) >> 4) // nvm_rank_vrefddr
#define OTP_RANK_LDO6 ((NVM_SECTOR3_REGISTER_3 & 0x0C) >> 2) // nvm_rank_ldo6
#define OTP_RANK_LDO5 ((NVM_SECTOR3_REGISTER_3 & 0x03)) // nvm_rank_ldo5
/*
* nvm_output_buck4: Buck4 default output selection
00: 1.15V
01: 1.2V
10: 1.8V
11: 3.3V
nvm_output_buck3: Buck3 default output selection
00: 1.2V
01: 1.8V
10: 3.0V
11: 3.3V
nvm_output_buck2: Buck2 default output selection
00: 1.1V
01: 1.2V
10: 1.35V
11: 1.5V
nvm_output_buck1: Buck1 default output selection
00: 1.1V
01: 1.15V
10: 1.2V
11: 1.25V
*
*/
#define OTP_OUTPUT_BUCK4 ((NVM_SECTOR3_REGISTER_4 & 0xC0) >> 6) // nvm_output_buck4
#define OTP_OUTPUT_BUCK3 ((NVM_SECTOR3_REGISTER_4 & 0x30) >> 4) // nvm_output_buck3
#define OTP_OUTPUT_BUCK2 ((NVM_SECTOR3_REGISTER_4 & 0x0C) >> 2) // nvm_output_buck2
#define OTP_OUTPUT_BUCK1 ((NVM_SECTOR3_REGISTER_4 & 0x03)) // nvm_output_buck1
/*
* [7] OTP_SWOFF_BY_BOOST_OVP:
0 -> SWOUT will not turnoff bu boost OVP
1 -> SWOUT will be turnoff by BOOST OVP
[6] reserved
[5:4] nvm_output_ldo3: LDO3 default output selection
00: 1.8V
01: 2.5V
10: 3.3V
11: output_buck2<4:0>/2 (VTT termination for DDR3 x32, Analog divider implemented in Analog)
[3:2] nvm_output_ldo2: LDO2 default output selection
00: 1.8V
01: 2.5V
10: 2.9V
11: 3.3V
[1:0] nvm_output_ldo1: LDO1 default output selection
00: 1.8V
01: 2.5V
10: 2.9V
11: 3.3V
*
*/
#define OTP_SWOFF_BY_BOOST_OVP ((NVM_SECTOR3_REGISTER_5 & 0x80) >> 7) // OTP_SWOFF_BY_BOOST_OVP
#define OTP_OUTPUT_LDO3 ((NVM_SECTOR3_REGISTER_5 & 0x30) >> 4) // nvm_output_ldo3
#define OTP_OUTPUT_LDO2 ((NVM_SECTOR3_REGISTER_5 & 0x0C) >> 2) // nvm_output_ldo2
#define OTP_OUTPUT_LDO1 ((NVM_SECTOR3_REGISTER_5 & 0x03)) // nvm_output_ldo1
/*
* [7:4] reserved
*
[3:2] nvm_output_ldo6: LDO6 default output selection
00: 1.0V
01: 1.2V
10: 1.8V
11: 3.3V
[1:0] nvm_output_ldo5: LDO5 default output selection
00: 1.8V
01: 2.5V
10: 2.9V
11 : 3.3V
*
*/
#define OTP_OUTPUT_LDO6 ((NVM_SECTOR3_REGISTER_6 & 0x0C) >> 2) // nvm_output_ldo6
#define OTP_OUTPUT_LDO5 ((NVM_SECTOR3_REGISTER_6 & 0x03)) // nvm_output_ldo5
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#define BIT(_x) (1<<(_x))
#define STM32_PMIC_NUM_IRQ_REGS 4
......@@ -280,33 +506,7 @@ IRQ_NR,
#define PMIC_VERSION_ID 0x10
#define NVM_SECTOR3_REGISTER_7 0x33
//#define STPMU1_I2C_ADDRESS ((NVM_SECTOR3_REGISTER_7 & 0x7F) << 1 )
/**
* @}
*/
/** @defgroup STM32MP15XX_EVAL_STPMU_Exported_Functions Exported Functions
* @{
*/
/* Exported functions --------------------------------------------------------*/
uint8_t STPMU1_Register_Read(uint8_t register_id);
void STPMU1_Register_Write(uint8_t register_id, uint8_t value);
void STPMU1_Register_Update(uint8_t register_id, uint8_t value, uint8_t mask);
void STPMU1_Enable_Interrupt(PMIC_IRQn IRQn);
void STPMU1_Disable_Interrupt(PMIC_IRQn IRQn);
void STPMU1_Regulator_Enable(PMIC_RegulId_TypeDef id);
void STPMU1_Regulator_Disable(PMIC_RegulId_TypeDef id);
uint8_t STPMU1_Is_Regulator_Enabled(PMIC_RegulId_TypeDef id);
void STPMU1_Regulator_Voltage_Set(PMIC_RegulId_TypeDef id,uint16_t milivolts);
uint32_t BSP_PMIC_Init(void);
uint32_t BSP_PMIC_DeInit(void);
uint32_t BSP_PMIC_Is_Device_Ready(void);
uint32_t BSP_PMIC_InitRegulators (void);
__weak void BSP_PMIC_INTn_Callback(PMIC_IRQn IRQn);
#define STPMU1_I2C_ADDRESS (NVM_SECTOR3_REGISTER_7 & 0x7F)
#ifdef __cplusplus
}
......
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-06-18 thread-liu the first version
*/
#include <board.h>
#if defined(BSP_USING_WWDG)
#include "drv_config.h"
#include <string.h>
#include <stdlib.h>
//#define DRV_DEBUG
#define LOG_TAG "drv.wwg"
#include <drv_log.h>
#define LED5_PIN GET_PIN(A, 14)
WWDG_HandleTypeDef hwwdg1;
void WWDG1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_WWDG_IRQHandler(&hwwdg1);
/* leave interrupt */
rt_interrupt_leave();
}
void HAL_WWDG_EarlyWakeupCallback(WWDG_HandleTypeDef* hwwdg)
{
static unsigned char led_value = 0x00;
led_value = !led_value;
if(hwwdg->Instance==WWDG1)
{
HAL_WWDG_Refresh(&hwwdg1);
rt_pin_write(LED5_PIN, led_value);
}
}
static void wwdg_init()
{
rt_pin_mode(LED5_PIN, PIN_MODE_OUTPUT);
hwwdg1.Instance = WWDG1;
hwwdg1.Init.Prescaler = WWDG_PRESCALER_8;
hwwdg1.Init.Window = 0X5F;
hwwdg1.Init.Counter = 0x7F;
hwwdg1.Init.EWIMode = WWDG_EWI_ENABLE;
if (HAL_WWDG_Init(&hwwdg1) != HAL_OK)
{
Error_Handler();
}
}
static void wwdg_control(uint8_t pre_value)
{
if(pre_value > 7)
{
pre_value = 7;
}
hwwdg1.Instance->CFR &= ~(7 << 11); /* clear WDGTB[2:0] */
hwwdg1.Instance->CFR |= pre_value << 11; /* set WDGTB[2:0] */
}
static int wwdg_sample(int argc, char *argv[])
{
if (argc > 1)
{
if (!strcmp(argv[1], "run"))
{
wwdg_init();
}
else if (!strcmp(argv[1], "set"))
{
if (argc > 2)
{
wwdg_control(atoi(argv[2]));
}
}
}
else
{
rt_kprintf("Usage:\n");
rt_kprintf("wwdg_sample run - open wwdg, when feed wwdg in wwdg irq, the LD5 will blink\n");
rt_kprintf("wwdg_sample set - set the wwdg prescaler, wwdg_sample set [0 - 7]\n");
}
return RT_EOK;
}
MSH_CMD_EXPORT(wwdg_sample, window watch dog sample);
#endif
......@@ -152,6 +152,12 @@
/* samples: kernel and components samples */
/* Privated Packages of RealThread */
/* Network Utilities */
#define SOC_FAMILY_STM32
#define SOC_SERIES_STM32MP1
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册