gicv3.c 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * Copyright (c) 2006-2021, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2013-07-20     Bernard      first version
 * 2014-04-03     Grissiom     many enhancements
 * 2018-11-22     Jesven       add rt_hw_ipi_send()
 *                             add rt_hw_ipi_handler_install()
 */

#include <rthw.h>
#include <rtthread.h>

#include "gicv3.h"
#include "cp15.h"

#ifndef RT_CPUS_NR
#define RT_CPUS_NR 1
#endif

struct arm_gic_v3
{
    rt_uint32_t offset;                     /* the first interrupt index in the vector table */
    rt_uint32_t redist_hw_base[RT_CPUS_NR]; /* the pointer of the gic redistributor */
    rt_uint32_t dist_hw_base;               /* the base address of the gic distributor */
    rt_uint32_t cpu_hw_base[RT_CPUS_NR];    /* the base addrees of the gic cpu interface */
};

/* 'ARM_GIC_MAX_NR' is the number of cores */
static struct arm_gic_v3 _gic_table[ARM_GIC_MAX_NR];
static unsigned int _gic_max_irq;

/**
 * @name: arm_gic_cpumask_to_affval
 * @msg:
 * @in param cpu_mask:
 * @out param cluster_id: aff1 [0:7],aff2 [8:15],aff3 [16:23]
 * @out param target_list:  Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
 *                          PE within a cluster with an Affinity 0 value equal to the bit number.
 * @return {rt_uint32_t} 0 is finish , 1 is data valid
 */
RT_WEAK rt_uint32_t arm_gic_cpumask_to_affval(rt_uint32_t *cpu_mask, rt_uint32_t *cluster_id, rt_uint32_t *target_list)
{
    return 0;
}

RT_WEAK rt_uint64_t get_main_cpu_affval(void)
{
    return 0;
}

int arm_gic_get_active_irq(rt_uint32_t index)
{
    int irq;

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    __get_gicv3_reg(ICC_IAR1, irq);

    irq = (irq & 0x1FFFFFF) + _gic_table[index].offset;
    return irq;
}

void arm_gic_ack(rt_uint32_t index, int irq)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);
    RT_ASSERT(irq >= 0U);

    __asm__ volatile("dsb 0xF" ::
                         : "memory");
    __set_gicv3_reg(ICC_EOIR1, irq);
}

void arm_gic_mask(rt_uint32_t index, int irq)
{
    rt_uint32_t mask = 1U << (irq % 32U);

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    if (irq < 32U)
    {
        rt_int32_t cpu_id = rt_hw_cpu_id();
        RT_ASSERT((cpu_id) < RT_CPUS_NR);
        GIC_RDISTSGI_ICENABLER0(_gic_table[index].redist_hw_base[cpu_id]) = mask;
    }
    else
    {
        GIC_DIST_ENABLE_CLEAR(_gic_table[index].dist_hw_base, irq) = mask;
    }
}

void arm_gic_umask(rt_uint32_t index, int irq)
{
    rt_uint32_t mask = 1U << (irq % 32U);

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    if (irq < 32U)
    {
        rt_int32_t cpu_id = rt_hw_cpu_id();
        RT_ASSERT((cpu_id) < RT_CPUS_NR);
        GIC_RDISTSGI_ISENABLER0(_gic_table[index].redist_hw_base[cpu_id]) = mask;
    }
    else
    {
        GIC_DIST_ENABLE_SET(_gic_table[index].dist_hw_base, irq) = mask;
    }
}

rt_uint32_t arm_gic_get_pending_irq(rt_uint32_t index, int irq)
{
    rt_uint32_t pend;

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    if (irq >= 16U)
    {
        pend = (GIC_DIST_PENDING_SET(_gic_table[index].dist_hw_base, irq) >> (irq % 32U)) & 0x1UL;
    }
    else
    {
        /* INTID 0-15 Software Generated Interrupt */
        pend = (GIC_DIST_SPENDSGI(_gic_table[index].dist_hw_base, irq) >> ((irq % 4U) * 8U)) & 0xFFUL;
        /* No CPU identification offered */
        if (pend != 0U)
        {
            pend = 1U;
        }
        else
        {
            pend = 0U;
        }
    }

    return (pend);
}

void arm_gic_set_pending_irq(rt_uint32_t index, int irq)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    if (irq >= 16U)
    {
        GIC_DIST_PENDING_SET(_gic_table[index].dist_hw_base, irq) = 1U << (irq % 32U);
    }
    else
    {
        /* INTID 0-15 Software Generated Interrupt */
        /* Forward the interrupt to the CPU interface that requested it */
        GIC_DIST_SOFTINT(_gic_table[index].dist_hw_base) = (irq | 0x02000000U);
    }
}

void arm_gic_clear_pending_irq(rt_uint32_t index, int irq)
{
    rt_uint32_t mask;

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    if (irq >= 16U)
    {
        mask = 1U << (irq % 32U);
        GIC_DIST_PENDING_CLEAR(_gic_table[index].dist_hw_base, irq) = mask;
    }
    else
    {
        mask = 1U << ((irq % 4U) * 8U);
        GIC_DIST_CPENDSGI(_gic_table[index].dist_hw_base, irq) = mask;
    }
}

M
mazhiyuan 已提交
190
void arm_gic_set_configuration(rt_uint32_t index, int irq, rt_uint32_t config)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
{
    rt_uint32_t icfgr;
    rt_uint32_t shift;

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    icfgr = GIC_DIST_CONFIG(_gic_table[index].dist_hw_base, irq);
    shift = (irq % 16U) << 1U;

    icfgr &= (~(3U << shift));
    icfgr |= (config << shift);

    GIC_DIST_CONFIG(_gic_table[index].dist_hw_base, irq) = icfgr;
}

rt_uint32_t arm_gic_get_configuration(rt_uint32_t index, int irq)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    return (GIC_DIST_CONFIG(_gic_table[index].dist_hw_base, irq) >> ((irq % 16U) >> 1U));
}

void arm_gic_clear_active(rt_uint32_t index, int irq)
{
    rt_uint32_t mask = 1U << (irq % 32U);

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    GIC_DIST_ACTIVE_CLEAR(_gic_table[index].dist_hw_base, irq) = mask;
}

/* Set up the cpu mask for the specific interrupt */
void arm_gic_set_cpu(rt_uint32_t index, int irq, unsigned int cpumask)
{
    rt_uint32_t old_tgt;

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    old_tgt = GIC_DIST_TARGET(_gic_table[index].dist_hw_base, irq);

    old_tgt &= ~(0x0FFUL << ((irq % 4U) * 8U));
    old_tgt |= cpumask << ((irq % 4U) * 8U);

    GIC_DIST_TARGET(_gic_table[index].dist_hw_base, irq) = old_tgt;
}

rt_uint32_t arm_gic_get_target_cpu(rt_uint32_t index, int irq)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    return (GIC_DIST_TARGET(_gic_table[index].dist_hw_base, irq) >> ((irq % 4U) * 8U)) & 0xFFUL;
}

void arm_gic_set_priority(rt_uint32_t index, int irq, rt_uint32_t priority)
{
    rt_uint32_t mask;

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    if (irq < 32U)
    {
        rt_int32_t cpu_id = rt_hw_cpu_id();
        RT_ASSERT((cpu_id) < RT_CPUS_NR);

        mask = GIC_RDISTSGI_IPRIORITYR(_gic_table[index].redist_hw_base[cpu_id], irq);
        mask &= ~(0xFFUL << ((irq % 4U) * 8U));
        mask |= ((priority & 0xFFUL) << ((irq % 4U) * 8U));
        GIC_RDISTSGI_IPRIORITYR(_gic_table[index].redist_hw_base[cpu_id], irq) = mask;
    }
    else
    {
        mask = GIC_DIST_PRI(_gic_table[index].dist_hw_base, irq);
        mask &= ~(0xFFUL << ((irq % 4U) * 8U));
        mask |= ((priority & 0xFFUL) << ((irq % 4U) * 8U));
        GIC_DIST_PRI(_gic_table[index].dist_hw_base, irq) = mask;
    }
}

rt_uint32_t arm_gic_get_priority(rt_uint32_t index, int irq)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    if (irq < 32U)
    {
        rt_int32_t cpu_id = rt_hw_cpu_id();

        RT_ASSERT((cpu_id) < RT_CPUS_NR);
        return (GIC_RDISTSGI_IPRIORITYR(_gic_table[index].redist_hw_base[cpu_id], irq) >> ((irq % 4U) * 8U)) & 0xFFUL;
    }
    else
    {
        return (GIC_DIST_PRI(_gic_table[index].dist_hw_base, irq) >> ((irq % 4U) * 8U)) & 0xFFUL;
    }
}

void arm_gic_set_system_register_enable_mask(rt_uint32_t index, rt_uint32_t value)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);

    value &= 0xFFUL;
    /* set priority mask */
    __set_gicv3_reg(ICC_SRE, value);
    __asm__ volatile ("isb 0xF"::
                        :"memory");
}

rt_uint32_t arm_gic_get_system_register_enable_mask(rt_uint32_t index)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);
    rt_uint32_t value;

    __get_gicv3_reg(ICC_SRE, value);
    return value;
}

void arm_gic_set_interface_prior_mask(rt_uint32_t index, rt_uint32_t priority)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);

    priority &= 0xFFUL;
    /* set priority mask */
    __set_gicv3_reg(ICC_PMR, priority);
}

rt_uint32_t arm_gic_get_interface_prior_mask(rt_uint32_t index)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);
    rt_uint32_t priority;

    __get_gicv3_reg(ICC_PMR, priority);
    return priority;
}

void arm_gic_set_binary_point(rt_uint32_t index, rt_uint32_t binary_point)
{
    index = index;
    binary_point &= 0x7U;

    __set_gicv3_reg(ICC_BPR1, binary_point);
}

rt_uint32_t arm_gic_get_binary_point(rt_uint32_t index)
{
    rt_uint32_t binary_point;

    index = index;
    __get_gicv3_reg(ICC_BPR1, binary_point);
    return binary_point;
}

rt_uint32_t arm_gic_get_irq_status(rt_uint32_t index, int irq)
{
    rt_uint32_t pending;
    rt_uint32_t active;

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    active = (GIC_DIST_ACTIVE_SET(_gic_table[index].dist_hw_base, irq) >> (irq % 32U)) & 0x1UL;
    pending = (GIC_DIST_PENDING_SET(_gic_table[index].dist_hw_base, irq) >> (irq % 32U)) & 0x1UL;

    return ((active << 1U) | pending);
}

void arm_gic_send_affinity_sgi(rt_uint32_t index, int irq, rt_uint32_t cpu_mask, rt_uint32_t routing_mode)
{
    rt_uint64_t sgi_val;

    if (routing_mode)
    {
        sgi_val = (1ULL << 40) | ((irq & 0x0FULL) << 24); //Interrupts routed to all PEs in the system, excluding "self".
        /*  Write the ICC_SGI1R registers */
        __asm__ volatile("dsb 0xF" ::
                            : "memory");
        __set_cp64(15, 0, sgi_val, 12);
        __asm__ volatile("isb 0xF" ::
                            : "memory");
    }
    else
    {
        rt_uint32_t cluster_id, target_list;
        while (arm_gic_cpumask_to_affval(&cpu_mask, &cluster_id, &target_list))
        {
            sgi_val = ((irq & 0x0FULL) << 24 |
                       target_list |
                       ((cluster_id >> 8) & 0xFFULL) << GIC_RSGI_AFF1_OFFSET |
                       ((cluster_id >> 16) & 0xFFULL) << GIC_RSGI_AFF2_OFFSET |
                       ((cluster_id >> 24) & 0xFFull) << GIC_RSGI_AFF3_OFFSET);

            __asm__ volatile("dsb 0xF" ::
                                : "memory");
            __set_cp64(15, 0, sgi_val, 12);
            __asm__ volatile("isb 0xF" ::
                                : "memory");
        }
    }
}

rt_uint32_t arm_gic_get_high_pending_irq(rt_uint32_t index)
{
    rt_uint32_t irq;
    RT_ASSERT(index < ARM_GIC_MAX_NR);

    index = index;
    __get_gicv3_reg(ICC_HPPIR1, irq);
    return irq;
}

rt_uint32_t arm_gic_get_interface_id(rt_uint32_t index)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);

    return GIC_CPU_IIDR(_gic_table[index].cpu_hw_base);
}

void arm_gic_set_group(rt_uint32_t index, int irq, rt_uint32_t group)
{
M
mazhiyuan 已提交
431 432
    rt_uint32_t igroupr;
    rt_uint32_t shift;
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

    RT_ASSERT(index < ARM_GIC_MAX_NR);
    RT_ASSERT(group <= 1U);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    igroupr = GIC_DIST_IGROUP(_gic_table[index].dist_hw_base, irq);
    shift = (irq % 32U);
    igroupr &= (~(1U << shift));
    igroupr |= ((group & 0x1U) << shift);

    GIC_DIST_IGROUP(_gic_table[index].dist_hw_base, irq) = igroupr;
}

rt_uint32_t arm_gic_get_group(rt_uint32_t index, int irq)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);

    irq = irq - _gic_table[index].offset;
    RT_ASSERT(irq >= 0U);

    return (GIC_DIST_IGROUP(_gic_table[index].dist_hw_base, irq) >> (irq % 32U)) & 0x1UL;
}

static int arm_gicv3_wait_rwp(rt_uint32_t index, rt_uint32_t irq)
{
    rt_uint32_t rwp_bit;
    rt_uint32_t base;

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    if (irq < 32u)
    {
        rt_int32_t cpu_id = rt_hw_cpu_id();

        RT_ASSERT((cpu_id) < RT_CPUS_NR);
        base = _gic_table[index].redist_hw_base[cpu_id];
        rwp_bit = GICR_CTLR_RWP;
    }
    else
    {
        base = _gic_table[index].dist_hw_base;
        rwp_bit = GICD_CTLR_RWP;
    }

    while (__REG32(base) & rwp_bit)
    {
        ;
    }

    return 0;
}

int arm_gic_dist_init(rt_uint32_t index, rt_uint32_t dist_base, int irq_start)
{
    rt_uint64_t cpu0_affval;
    unsigned int gic_type, i;

    RT_ASSERT(index < ARM_GIC_MAX_NR);

    _gic_table[index].dist_hw_base = dist_base;
    _gic_table[index].offset = irq_start;

    /* Find out how many interrupts are supported. */
    gic_type = GIC_DIST_TYPE(dist_base);
    _gic_max_irq = ((gic_type & 0x1fU) + 1U) * 32U;

    /*
     * The GIC only supports up to 1020 interrupt sources.
     * Limit this to either the architected maximum, or the
     * platform maximum.
     */
    if (_gic_max_irq > 1020U)
        _gic_max_irq = 1020U;
    if (_gic_max_irq > ARM_GIC_NR_IRQS) /* the platform maximum interrupts */
        _gic_max_irq = ARM_GIC_NR_IRQS;

    GIC_DIST_CTRL(dist_base) = 0x0U;
    /* Wait for register write pending */
    arm_gicv3_wait_rwp(0, 32);

    /* Set all global interrupts to be level triggered, active low. */
    for (i = 32U; i < _gic_max_irq; i += 16U)
        GIC_DIST_CONFIG(dist_base, i) = 0x0U;

    arm_gicv3_wait_rwp(0, 32);

    cpu0_affval = get_main_cpu_affval();
    /* Set all global interrupts to this CPU only. */
    for (i = 32U; i < _gic_max_irq; i++)
    {
        GIC_DIST_IROUTER_LOW(dist_base, i) = cpu0_affval;
        GIC_DIST_IROUTER_HIGH(dist_base, i) = cpu0_affval >> 32;
    }

    arm_gicv3_wait_rwp(0, 32);

    /* Set priority on spi interrupts. */
    for (i = 32U; i < _gic_max_irq; i += 4U)
        GIC_DIST_PRI(dist_base, i) = 0xa0a0a0a0U;

    arm_gicv3_wait_rwp(0, 32);
    /* Disable all interrupts. */
    for (i = 0U; i < _gic_max_irq; i += 32U)
    {
        GIC_DIST_PENDING_CLEAR(dist_base, i) = 0xffffffffU;
        GIC_DIST_ENABLE_CLEAR(dist_base, i) = 0xffffffffU;
    }

    arm_gicv3_wait_rwp(0, 32);
    /* All interrupts defaults to IGROUP1(IRQ). */
    for (i = 0U; i < _gic_max_irq; i += 32U)
        GIC_DIST_IGROUP(dist_base, i) = 0xffffffffU;

    arm_gicv3_wait_rwp(0, 32);

    /*
            The Distributor control register (GICD_CTLR) must be configured to enable the interrupt groups and to set the routing mode.
            Enable Affinity routing (ARE bits) The ARE bits in GICD_CTLR control whether affinity routing is enabled.
            If affinity routing is not enabled, GICv3 can be configured for legacy operation.
            Whether affinity routing is enabled or not can be controlled separately for Secure and Non-secure state.
            Enables GICD_CTLR contains separate enable bits for Group 0, Secure Group 1 and Non-secure Group 1:
            GICD_CTLR.EnableGrp1S enables distribution of Secure Group 1 interrupts.
            GICD_CTLR.EnableGrp1NS enables distribution of Non-secure Group 1 interrupts.
            GICD_CTLR.EnableGrp0 enables distribution of Group 0 interrupts.
      */
    GIC_DIST_CTRL(dist_base) = GICD_CTLR_ARE_NS | GICD_CTLR_ENGRP1NS;

    return 0;
}

int arm_gic_redist_address_set(rt_uint32_t index, rt_uint32_t redist_addr, rt_uint32_t cpu_id)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);
    RT_ASSERT((cpu_id) < RT_CPUS_NR);
    _gic_table[index].redist_hw_base[cpu_id] = redist_addr;

    return 0;
}

int arm_gic_cpu_interface_address_set(rt_uint32_t index, rt_uint32_t interface_addr, rt_uint32_t cpu_id)
{
    RT_ASSERT(index < ARM_GIC_MAX_NR);
    RT_ASSERT((cpu_id) < RT_CPUS_NR);
    _gic_table[index].cpu_hw_base[cpu_id] = interface_addr;

    return 0;
}

int arm_gic_redist_init(rt_uint32_t index)
{
    unsigned int i;
    rt_uint32_t base;
    rt_int32_t cpu_id = rt_hw_cpu_id();

    RT_ASSERT(index < ARM_GIC_MAX_NR);
    RT_ASSERT((cpu_id) < RT_CPUS_NR);

    base = _gic_table[index].redist_hw_base[cpu_id];
    /* redistributor enable */
    GIC_RDIST_WAKER(base) &= ~(1U << 1);
    while (GIC_RDIST_WAKER(base) & (1 << 2))
    {
        ;
    }

    /* Disable all sgi and ppi interrupt */
    GIC_RDISTSGI_ICENABLER0(base) = 0xFFFFFFFF;
    arm_gicv3_wait_rwp(0, 0);

    /* Clear all inetrrupt pending */
    GIC_RDISTSGI_ICPENDR0(base) = 0xFFFFFFFF;

    /* the corresponding interrupt is Group 1 or Non-secure Group 1. */
    GIC_RDISTSGI_IGROUPR0(base, 0) = 0xFFFFFFFF;
    GIC_RDISTSGI_IGRPMODR0(base, 0) = 0xFFFFFFFF;

    /* Configure default priorities for SGI 0:15 and PPI 16:31. */
    for (i = 0; i < 32; i += 4)
    {
        GIC_RDISTSGI_IPRIORITYR(base, i) = 0xa0a0a0a0U;
    }

    /* Trigger level for PPI interrupts*/
    GIC_RDISTSGI_ICFGR1(base) = 0x0U; // PPI is level-sensitive.
    return 0;
}

int arm_gic_cpu_init(rt_uint32_t index)
{
    rt_uint32_t value;
    RT_ASSERT(index < ARM_GIC_MAX_NR);

    value = arm_gic_get_system_register_enable_mask(index);
    value |= (1U << 0);
    arm_gic_set_system_register_enable_mask(index, value);
    __set_gicv3_reg(ICC_CTLR, 0);

    arm_gic_set_interface_prior_mask(index, 0xFFU);

    /* Enable group1 interrupt */
    value = 0x1U;
    __set_gicv3_reg(ICC_IGRPEN1, value);

    arm_gic_set_binary_point(0, 0);

    /* ICC_BPR0_EL1 determines the preemption group for both
       Group 0 and Group 1 interrupts.
       */
    value = 0x1U;
    __set_gicv3_reg(ICC_CTLR, value);

    return 0;
}

#ifdef RT_USING_SMP
void arm_gic_secondary_cpu_init(void)
{
    arm_gic_redist_init(0);

    arm_gic_cpu_init(0);
}
#endif

void arm_gic_dump_type(rt_uint32_t index)
{
    unsigned int gic_type;

    gic_type = GIC_DIST_TYPE(_gic_table[index].dist_hw_base);
    rt_kprintf("GICv%d on %p, max IRQs: %d, %s security extension(%08x)\n",
               (GIC_DIST_ICPIDR2(_gic_table[index].dist_hw_base) >> 4U) & 0xfUL,
               _gic_table[index].dist_hw_base,
               _gic_max_irq,
               gic_type & (1U << 10U) ? "has" : "no",
               gic_type);
}

void arm_gic_dump(rt_uint32_t index)
{
    unsigned int i, k;

    k = arm_gic_get_high_pending_irq(0);
    rt_kprintf("--- high pending priority: %d(%08x)\n", k, k);
    rt_kprintf("--- hw mask ---\n");
    for (i = 0U; i < _gic_max_irq / 32U; i++)
    {
        rt_kprintf("0x%08x, ",
                   GIC_DIST_ENABLE_SET(_gic_table[index].dist_hw_base,
                                       i * 32U));
    }
    rt_kprintf("\n--- hw pending ---\n");
    for (i = 0U; i < _gic_max_irq / 32U; i++)
    {
        rt_kprintf("0x%08x, ",
                   GIC_DIST_PENDING_SET(_gic_table[index].dist_hw_base,
                                        i * 32U));
    }
    rt_kprintf("\n--- hw active ---\n");
    for (i = 0U; i < _gic_max_irq / 32U; i++)
    {
        rt_kprintf("0x%08x, ",
                   GIC_DIST_ACTIVE_SET(_gic_table[index].dist_hw_base,
                                       i * 32U));
    }
    rt_kprintf("\n");
}

long gic_dump(void)
{
    arm_gic_dump_type(0);
    arm_gic_dump(0);

    return 0;
}
MSH_CMD_EXPORT(gic_dump, show gic status);