nvme.h 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * QEMU NVM Express
 *
 * Copyright (c) 2012 Intel Corporation
 * Copyright (c) 2021 Minwoo Im
 * Copyright (c) 2021 Samsung Electronics Co., Ltd.
 *
 * Authors:
 *   Keith Busch            <kbusch@kernel.org>
 *   Klaus Jensen           <k.jensen@samsung.com>
 *   Gollu Appalanaidu      <anaidu.gollu@samsung.com>
 *   Dmitry Fomichev        <dmitry.fomichev@wdc.com>
 *   Minwoo Im              <minwoo.im.dev@gmail.com>
 *
 * This code is licensed under the GNU GPL v2 or later.
 */

18 19
#ifndef HW_NVME_INTERNAL_H
#define HW_NVME_INTERNAL_H
20

21
#include "qemu/uuid.h"
22
#include "hw/pci/pci.h"
23 24 25
#include "hw/block/block.h"

#include "block/nvme.h"
26

27 28
#define NVME_MAX_CONTROLLERS 32
#define NVME_MAX_NAMESPACES  256
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
typedef struct NvmeCtrl NvmeCtrl;
typedef struct NvmeNamespace NvmeNamespace;

#define TYPE_NVME_SUBSYS "nvme-subsys"
#define NVME_SUBSYS(obj) \
    OBJECT_CHECK(NvmeSubsystem, (obj), TYPE_NVME_SUBSYS)

typedef struct NvmeSubsystem {
    DeviceState parent_obj;
    uint8_t     subnqn[256];

    NvmeCtrl      *ctrls[NVME_MAX_CONTROLLERS];
    NvmeNamespace *namespaces[NVME_MAX_NAMESPACES + 1];

    struct {
        char *nqn;
    } params;
} NvmeSubsystem;

int nvme_subsys_register_ctrl(NvmeCtrl *n, Error **errp);

static inline NvmeCtrl *nvme_subsys_ctrl(NvmeSubsystem *subsys,
                                         uint32_t cntlid)
{
    if (!subsys || cntlid >= NVME_MAX_CONTROLLERS) {
        return NULL;
    }

    return subsys->ctrls[cntlid];
}

static inline NvmeNamespace *nvme_subsys_ns(NvmeSubsystem *subsys,
                                            uint32_t nsid)
{
    if (!subsys || !nsid || nsid > NVME_MAX_NAMESPACES) {
        return NULL;
    }

    return subsys->namespaces[nsid];
}

#define TYPE_NVME_NS "nvme-ns"
#define NVME_NS(obj) \
    OBJECT_CHECK(NvmeNamespace, (obj), TYPE_NVME_NS)

typedef struct NvmeZone {
    NvmeZoneDescr   d;
    uint64_t        w_ptr;
    QTAILQ_ENTRY(NvmeZone) entry;
} NvmeZone;

typedef struct NvmeNamespaceParams {
    bool     detached;
    bool     shared;
    uint32_t nsid;
    QemuUUID uuid;

    uint16_t ms;
    uint8_t  mset;
    uint8_t  pi;
    uint8_t  pil;

    uint16_t mssrl;
    uint32_t mcl;
    uint8_t  msrc;

    bool     zoned;
    bool     cross_zone_read;
    uint64_t zone_size_bs;
    uint64_t zone_cap_bs;
    uint32_t max_active_zones;
    uint32_t max_open_zones;
    uint32_t zd_extension_size;
} NvmeNamespaceParams;

typedef struct NvmeNamespace {
    DeviceState  parent_obj;
    BlockConf    blkconf;
    int32_t      bootindex;
    int64_t      size;
110
    int64_t      moff;
111
    NvmeIdNs     id_ns;
112 113
    NvmeLBAF     lbaf;
    size_t       lbasz;
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    const uint32_t *iocs;
    uint8_t      csi;
    uint16_t     status;
    int          attached;

    QTAILQ_ENTRY(NvmeNamespace) entry;

    NvmeIdNsZoned   *id_ns_zoned;
    NvmeZone        *zone_array;
    QTAILQ_HEAD(, NvmeZone) exp_open_zones;
    QTAILQ_HEAD(, NvmeZone) imp_open_zones;
    QTAILQ_HEAD(, NvmeZone) closed_zones;
    QTAILQ_HEAD(, NvmeZone) full_zones;
    uint32_t        num_zones;
    uint64_t        zone_size;
    uint64_t        zone_capacity;
    uint32_t        zone_size_log2;
    uint8_t         *zd_extensions;
    int32_t         nr_open_zones;
    int32_t         nr_active_zones;

    NvmeNamespaceParams params;

    struct {
        uint32_t err_rec;
    } features;
} NvmeNamespace;

static inline uint32_t nvme_nsid(NvmeNamespace *ns)
{
    if (ns) {
        return ns->params.nsid;
    }

    return 0;
}

static inline size_t nvme_l2b(NvmeNamespace *ns, uint64_t lba)
{
153
    return lba << ns->lbaf.ds;
154 155 156 157
}

static inline size_t nvme_m2b(NvmeNamespace *ns, uint64_t lba)
{
158
    return ns->lbaf.ms * lba;
159 160
}

161 162 163 164 165
static inline int64_t nvme_moff(NvmeNamespace *ns, uint64_t lba)
{
    return ns->moff + nvme_m2b(ns, lba);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
static inline bool nvme_ns_ext(NvmeNamespace *ns)
{
    return !!NVME_ID_NS_FLBAS_EXTENDED(ns->id_ns.flbas);
}

static inline NvmeZoneState nvme_get_zone_state(NvmeZone *zone)
{
    return zone->d.zs >> 4;
}

static inline void nvme_set_zone_state(NvmeZone *zone, NvmeZoneState state)
{
    zone->d.zs = state << 4;
}

static inline uint64_t nvme_zone_rd_boundary(NvmeNamespace *ns, NvmeZone *zone)
{
    return zone->d.zslba + ns->zone_size;
}

static inline uint64_t nvme_zone_wr_boundary(NvmeZone *zone)
{
    return zone->d.zslba + zone->d.zcap;
}

static inline bool nvme_wp_is_valid(NvmeZone *zone)
{
    uint8_t st = nvme_get_zone_state(zone);

    return st != NVME_ZONE_STATE_FULL &&
           st != NVME_ZONE_STATE_READ_ONLY &&
           st != NVME_ZONE_STATE_OFFLINE;
}

static inline uint8_t *nvme_get_zd_extension(NvmeNamespace *ns,
                                             uint32_t zone_idx)
{
    return &ns->zd_extensions[zone_idx * ns->params.zd_extension_size];
}

static inline void nvme_aor_inc_open(NvmeNamespace *ns)
{
    assert(ns->nr_open_zones >= 0);
    if (ns->params.max_open_zones) {
        ns->nr_open_zones++;
        assert(ns->nr_open_zones <= ns->params.max_open_zones);
    }
}

static inline void nvme_aor_dec_open(NvmeNamespace *ns)
{
    if (ns->params.max_open_zones) {
        assert(ns->nr_open_zones > 0);
        ns->nr_open_zones--;
    }
    assert(ns->nr_open_zones >= 0);
}

static inline void nvme_aor_inc_active(NvmeNamespace *ns)
{
    assert(ns->nr_active_zones >= 0);
    if (ns->params.max_active_zones) {
        ns->nr_active_zones++;
        assert(ns->nr_active_zones <= ns->params.max_active_zones);
    }
}

static inline void nvme_aor_dec_active(NvmeNamespace *ns)
{
    if (ns->params.max_active_zones) {
        assert(ns->nr_active_zones > 0);
        ns->nr_active_zones--;
        assert(ns->nr_active_zones >= ns->nr_open_zones);
    }
    assert(ns->nr_active_zones >= 0);
}

void nvme_ns_init_format(NvmeNamespace *ns);
int nvme_ns_setup(NvmeCtrl *n, NvmeNamespace *ns, Error **errp);
void nvme_ns_drain(NvmeNamespace *ns);
void nvme_ns_shutdown(NvmeNamespace *ns);
void nvme_ns_cleanup(NvmeNamespace *ns);
248

249
typedef struct NvmeAsyncEvent {
250
    QTAILQ_ENTRY(NvmeAsyncEvent) entry;
251 252 253
    NvmeAerResult result;
} NvmeAsyncEvent;

254 255 256 257 258 259 260 261 262 263 264 265 266 267
enum {
    NVME_SG_ALLOC = 1 << 0,
    NVME_SG_DMA   = 1 << 1,
};

typedef struct NvmeSg {
    int flags;

    union {
        QEMUSGList   qsg;
        QEMUIOVector iov;
    };
} NvmeSg;

268 269 270 271 272
typedef enum NvmeTxDirection {
    NVME_TX_DIRECTION_TO_DEVICE   = 0,
    NVME_TX_DIRECTION_FROM_DEVICE = 1,
} NvmeTxDirection;

273 274
typedef struct NvmeRequest {
    struct NvmeSQueue       *sq;
275
    struct NvmeNamespace    *ns;
276
    BlockAIOCB              *aiocb;
277
    uint16_t                status;
278
    void                    *opaque;
279
    NvmeCqe                 cqe;
280
    NvmeCmd                 cmd;
281
    BlockAcctCookie         acct;
282
    NvmeSg                  sg;
283 284 285
    QTAILQ_ENTRY(NvmeRequest)entry;
} NvmeRequest;

286 287 288 289 290 291 292 293 294
typedef struct NvmeBounceContext {
    NvmeRequest *req;

    struct {
        QEMUIOVector iov;
        uint8_t *bounce;
    } data, mdata;
} NvmeBounceContext;

295 296 297 298 299 300 301 302 303 304 305 306 307
static inline const char *nvme_adm_opc_str(uint8_t opc)
{
    switch (opc) {
    case NVME_ADM_CMD_DELETE_SQ:        return "NVME_ADM_CMD_DELETE_SQ";
    case NVME_ADM_CMD_CREATE_SQ:        return "NVME_ADM_CMD_CREATE_SQ";
    case NVME_ADM_CMD_GET_LOG_PAGE:     return "NVME_ADM_CMD_GET_LOG_PAGE";
    case NVME_ADM_CMD_DELETE_CQ:        return "NVME_ADM_CMD_DELETE_CQ";
    case NVME_ADM_CMD_CREATE_CQ:        return "NVME_ADM_CMD_CREATE_CQ";
    case NVME_ADM_CMD_IDENTIFY:         return "NVME_ADM_CMD_IDENTIFY";
    case NVME_ADM_CMD_ABORT:            return "NVME_ADM_CMD_ABORT";
    case NVME_ADM_CMD_SET_FEATURES:     return "NVME_ADM_CMD_SET_FEATURES";
    case NVME_ADM_CMD_GET_FEATURES:     return "NVME_ADM_CMD_GET_FEATURES";
    case NVME_ADM_CMD_ASYNC_EV_REQ:     return "NVME_ADM_CMD_ASYNC_EV_REQ";
308
    case NVME_ADM_CMD_NS_ATTACHMENT:    return "NVME_ADM_CMD_NS_ATTACHMENT";
309
    case NVME_ADM_CMD_FORMAT_NVM:       return "NVME_ADM_CMD_FORMAT_NVM";
310 311 312 313 314 315 316 317 318 319
    default:                            return "NVME_ADM_CMD_UNKNOWN";
    }
}

static inline const char *nvme_io_opc_str(uint8_t opc)
{
    switch (opc) {
    case NVME_CMD_FLUSH:            return "NVME_NVM_CMD_FLUSH";
    case NVME_CMD_WRITE:            return "NVME_NVM_CMD_WRITE";
    case NVME_CMD_READ:             return "NVME_NVM_CMD_READ";
320
    case NVME_CMD_COMPARE:          return "NVME_NVM_CMD_COMPARE";
321
    case NVME_CMD_WRITE_ZEROES:     return "NVME_NVM_CMD_WRITE_ZEROES";
322
    case NVME_CMD_DSM:              return "NVME_NVM_CMD_DSM";
323
    case NVME_CMD_VERIFY:           return "NVME_NVM_CMD_VERIFY";
324
    case NVME_CMD_COPY:             return "NVME_NVM_CMD_COPY";
325 326 327
    case NVME_CMD_ZONE_MGMT_SEND:   return "NVME_ZONED_CMD_MGMT_SEND";
    case NVME_CMD_ZONE_MGMT_RECV:   return "NVME_ZONED_CMD_MGMT_RECV";
    case NVME_CMD_ZONE_APPEND:      return "NVME_ZONED_CMD_ZONE_APPEND";
328 329 330 331
    default:                        return "NVME_NVM_CMD_UNKNOWN";
    }
}

332 333 334 335 336 337 338 339 340 341
typedef struct NvmeSQueue {
    struct NvmeCtrl *ctrl;
    uint16_t    sqid;
    uint16_t    cqid;
    uint32_t    head;
    uint32_t    tail;
    uint32_t    size;
    uint64_t    dma_addr;
    QEMUTimer   *timer;
    NvmeRequest *io_req;
342 343
    QTAILQ_HEAD(, NvmeRequest) req_list;
    QTAILQ_HEAD(, NvmeRequest) out_req_list;
344 345 346 347 348 349 350 351 352 353 354 355 356 357
    QTAILQ_ENTRY(NvmeSQueue) entry;
} NvmeSQueue;

typedef struct NvmeCQueue {
    struct NvmeCtrl *ctrl;
    uint8_t     phase;
    uint16_t    cqid;
    uint16_t    irq_enabled;
    uint32_t    head;
    uint32_t    tail;
    uint32_t    vector;
    uint32_t    size;
    uint64_t    dma_addr;
    QEMUTimer   *timer;
358 359
    QTAILQ_HEAD(, NvmeSQueue) sq_list;
    QTAILQ_HEAD(, NvmeRequest) req_list;
360 361
} NvmeCQueue;

362 363
#define TYPE_NVME_BUS "nvme-bus"
#define NVME_BUS(obj) OBJECT_CHECK(NvmeBus, (obj), TYPE_NVME_BUS)
364

365 366 367
typedef struct NvmeBus {
    BusState parent_bus;
} NvmeBus;
368

369 370 371 372
#define TYPE_NVME "nvme"
#define NVME(obj) \
        OBJECT_CHECK(NvmeCtrl, (obj), TYPE_NVME)

373 374 375 376 377 378 379 380 381 382 383 384
typedef struct NvmeParams {
    char     *serial;
    uint32_t num_queues; /* deprecated since 5.1 */
    uint32_t max_ioqpairs;
    uint16_t msix_qsize;
    uint32_t cmb_size_mb;
    uint8_t  aerl;
    uint32_t aer_max_queued;
    uint8_t  mdts;
    uint8_t  vsl;
    bool     use_intel_id;
    uint8_t  zasl;
385
    bool     auto_transition_zones;
386 387
    bool     legacy_cmb;
} NvmeParams;
388

389 390
typedef struct NvmeCtrl {
    PCIDevice    parent_obj;
391
    MemoryRegion bar0;
392 393
    MemoryRegion iomem;
    NvmeBar      bar;
394
    NvmeParams   params;
395
    NvmeBus      bus;
396

397
    uint16_t    cntlid;
398
    bool        qs_created;
A
Anton Blanchard 已提交
399
    uint32_t    page_size;
400 401 402 403 404 405
    uint16_t    page_bits;
    uint16_t    max_prp_ents;
    uint16_t    cqe_size;
    uint16_t    sqe_size;
    uint32_t    reg_size;
    uint32_t    max_q_ents;
406
    uint8_t     outstanding_aers;
407
    uint32_t    irq_status;
408 409
    uint64_t    host_timestamp;                 /* Timestamp sent by the host */
    uint64_t    timestamp_set_qemu_clock_ms;    /* QEMU clock time */
410 411
    uint64_t    starttime_ms;
    uint16_t    temperature;
412
    uint8_t     smart_critical_warning;
413

414 415 416 417 418 419 420
    struct {
        MemoryRegion mem;
        uint8_t      *buf;
        bool         cmse;
        hwaddr       cba;
    } cmb;

421 422 423 424 425
    struct {
        HostMemoryBackend *dev;
        bool              cmse;
        hwaddr            cba;
    } pmr;
426

427 428 429 430 431
    uint8_t     aer_mask;
    NvmeRequest **aer_reqs;
    QTAILQ_HEAD(, NvmeAsyncEvent) aer_queue;
    int         aer_queued;

432 433
    uint32_t    dmrsl;

434 435 436 437
    /* Namespace ID is started with 1 so bitmap should be 1-based */
#define NVME_CHANGED_NSID_SIZE  (NVME_MAX_NAMESPACES + 1)
    DECLARE_BITMAP(changed_nsids, NVME_CHANGED_NSID_SIZE);

438 439
    NvmeSubsystem   *subsys;

440
    NvmeNamespace   namespace;
441
    NvmeNamespace   *namespaces[NVME_MAX_NAMESPACES + 1];
442 443 444 445 446
    NvmeSQueue      **sq;
    NvmeCQueue      **cq;
    NvmeSQueue      admin_sq;
    NvmeCQueue      admin_cq;
    NvmeIdCtrl      id_ctrl;
447 448 449 450 451 452 453 454

    struct {
        struct {
            uint16_t temp_thresh_hi;
            uint16_t temp_thresh_low;
        };
        uint32_t    async_config;
    } features;
455 456
} NvmeCtrl;

457
static inline NvmeNamespace *nvme_ns(NvmeCtrl *n, uint32_t nsid)
458
{
459
    if (!nsid || nsid > NVME_MAX_NAMESPACES) {
460 461 462
        return NULL;
    }

463
    return n->namespaces[nsid];
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479
static inline NvmeCQueue *nvme_cq(NvmeRequest *req)
{
    NvmeSQueue *sq = req->sq;
    NvmeCtrl *n = sq->ctrl;

    return n->cq[sq->cqid];
}

static inline NvmeCtrl *nvme_ctrl(NvmeRequest *req)
{
    NvmeSQueue *sq = req->sq;
    return sq->ctrl;
}

480 481 482 483 484 485 486 487 488
static inline uint16_t nvme_cid(NvmeRequest *req)
{
    if (!req) {
        return 0xffff;
    }

    return le16_to_cpu(req->cqe.cid);
}

489
void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns);
490 491 492 493 494 495 496
uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
                          NvmeTxDirection dir, NvmeRequest *req);
uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
                           NvmeTxDirection dir, NvmeRequest *req);
void nvme_rw_complete_cb(void *opaque, int ret);
uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
                       NvmeCmd *cmd);
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/* from Linux kernel (crypto/crct10dif_common.c) */
static const uint16_t t10_dif_crc_table[256] = {
    0x0000, 0x8BB7, 0x9CD9, 0x176E, 0xB205, 0x39B2, 0x2EDC, 0xA56B,
    0xEFBD, 0x640A, 0x7364, 0xF8D3, 0x5DB8, 0xD60F, 0xC161, 0x4AD6,
    0x54CD, 0xDF7A, 0xC814, 0x43A3, 0xE6C8, 0x6D7F, 0x7A11, 0xF1A6,
    0xBB70, 0x30C7, 0x27A9, 0xAC1E, 0x0975, 0x82C2, 0x95AC, 0x1E1B,
    0xA99A, 0x222D, 0x3543, 0xBEF4, 0x1B9F, 0x9028, 0x8746, 0x0CF1,
    0x4627, 0xCD90, 0xDAFE, 0x5149, 0xF422, 0x7F95, 0x68FB, 0xE34C,
    0xFD57, 0x76E0, 0x618E, 0xEA39, 0x4F52, 0xC4E5, 0xD38B, 0x583C,
    0x12EA, 0x995D, 0x8E33, 0x0584, 0xA0EF, 0x2B58, 0x3C36, 0xB781,
    0xD883, 0x5334, 0x445A, 0xCFED, 0x6A86, 0xE131, 0xF65F, 0x7DE8,
    0x373E, 0xBC89, 0xABE7, 0x2050, 0x853B, 0x0E8C, 0x19E2, 0x9255,
    0x8C4E, 0x07F9, 0x1097, 0x9B20, 0x3E4B, 0xB5FC, 0xA292, 0x2925,
    0x63F3, 0xE844, 0xFF2A, 0x749D, 0xD1F6, 0x5A41, 0x4D2F, 0xC698,
    0x7119, 0xFAAE, 0xEDC0, 0x6677, 0xC31C, 0x48AB, 0x5FC5, 0xD472,
    0x9EA4, 0x1513, 0x027D, 0x89CA, 0x2CA1, 0xA716, 0xB078, 0x3BCF,
    0x25D4, 0xAE63, 0xB90D, 0x32BA, 0x97D1, 0x1C66, 0x0B08, 0x80BF,
    0xCA69, 0x41DE, 0x56B0, 0xDD07, 0x786C, 0xF3DB, 0xE4B5, 0x6F02,
    0x3AB1, 0xB106, 0xA668, 0x2DDF, 0x88B4, 0x0303, 0x146D, 0x9FDA,
    0xD50C, 0x5EBB, 0x49D5, 0xC262, 0x6709, 0xECBE, 0xFBD0, 0x7067,
    0x6E7C, 0xE5CB, 0xF2A5, 0x7912, 0xDC79, 0x57CE, 0x40A0, 0xCB17,
    0x81C1, 0x0A76, 0x1D18, 0x96AF, 0x33C4, 0xB873, 0xAF1D, 0x24AA,
    0x932B, 0x189C, 0x0FF2, 0x8445, 0x212E, 0xAA99, 0xBDF7, 0x3640,
    0x7C96, 0xF721, 0xE04F, 0x6BF8, 0xCE93, 0x4524, 0x524A, 0xD9FD,
    0xC7E6, 0x4C51, 0x5B3F, 0xD088, 0x75E3, 0xFE54, 0xE93A, 0x628D,
    0x285B, 0xA3EC, 0xB482, 0x3F35, 0x9A5E, 0x11E9, 0x0687, 0x8D30,
    0xE232, 0x6985, 0x7EEB, 0xF55C, 0x5037, 0xDB80, 0xCCEE, 0x4759,
    0x0D8F, 0x8638, 0x9156, 0x1AE1, 0xBF8A, 0x343D, 0x2353, 0xA8E4,
    0xB6FF, 0x3D48, 0x2A26, 0xA191, 0x04FA, 0x8F4D, 0x9823, 0x1394,
    0x5942, 0xD2F5, 0xC59B, 0x4E2C, 0xEB47, 0x60F0, 0x779E, 0xFC29,
    0x4BA8, 0xC01F, 0xD771, 0x5CC6, 0xF9AD, 0x721A, 0x6574, 0xEEC3,
    0xA415, 0x2FA2, 0x38CC, 0xB37B, 0x1610, 0x9DA7, 0x8AC9, 0x017E,
    0x1F65, 0x94D2, 0x83BC, 0x080B, 0xAD60, 0x26D7, 0x31B9, 0xBA0E,
    0xF0D8, 0x7B6F, 0x6C01, 0xE7B6, 0x42DD, 0xC96A, 0xDE04, 0x55B3
};

uint16_t nvme_check_prinfo(NvmeNamespace *ns, uint16_t ctrl, uint64_t slba,
                           uint32_t reftag);
uint16_t nvme_dif_mangle_mdata(NvmeNamespace *ns, uint8_t *mbuf, size_t mlen,
                               uint64_t slba);
void nvme_dif_pract_generate_dif(NvmeNamespace *ns, uint8_t *buf, size_t len,
                                 uint8_t *mbuf, size_t mlen, uint16_t apptag,
                                 uint32_t reftag);
uint16_t nvme_dif_check(NvmeNamespace *ns, uint8_t *buf, size_t len,
                        uint8_t *mbuf, size_t mlen, uint16_t ctrl,
                        uint64_t slba, uint16_t apptag,
                        uint16_t appmask, uint32_t reftag);
uint16_t nvme_dif_rw(NvmeCtrl *n, NvmeRequest *req);


548
#endif /* HW_NVME_INTERNAL_H */