提交 7936eaf2 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!63 add comments, optimize histogram log generator to record max and min

Merge pull request !63 from wenkai/wk0422_2
...@@ -120,6 +120,13 @@ class HistogramContainer: ...@@ -120,6 +120,13 @@ class HistogramContainer:
It's caller's duty to ensure input is valid. It's caller's duty to ensure input is valid.
Why we need visual range for histograms? Miss aligned buckets between steps might miss-lead users about the
trend of a tensor. Because for given tensor, if you have thinner buckets, count of every bucket might get
low, however, if you have thicker buckets, count of every bucket might get high. If there are the above two
kinds of histogram in one graph, user might think the histogram with thicker buckets has more values. This is
miss-leading. So we need to unify buckets across steps. Visual range for histogram is a technology for unifying
buckets.
Args: Args:
max_val (float): Max value for visual histogram. max_val (float): Max value for visual histogram.
min_val (float): Min value for visual histogram. min_val (float): Min value for visual histogram.
......
...@@ -172,6 +172,10 @@ class HistogramReservoir(Reservoir): ...@@ -172,6 +172,10 @@ class HistogramReservoir(Reservoir):
max_count = max(histogram.count, max_count) max_count = max(histogram.count, max_count)
visual_range.update(histogram.max, histogram.min) visual_range.update(histogram.max, histogram.min)
if visual_range.max == visual_range.min and not max_count:
logger.warning("Max equals to min, however, count is zero. Please check mindspore "
"does write max and min values to histogram summary file.")
bins = calc_histogram_bins(max_count) bins = calc_histogram_bins(max_count)
# update visual range # update visual range
......
# Copyright 2020 Huawei Technologies Co., Ltd # Copyright 2020 Huawei Technologies Co., Ltd
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
# You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""Log generator for histogram data.""" """Log generator for histogram data."""
import time import time
import numpy as np import numpy as np
from mindinsight.datavisual.proto_files import mindinsight_summary_pb2 as summary_pb2 from mindinsight.datavisual.proto_files import mindinsight_summary_pb2 as summary_pb2
from .log_generator import LogGenerator from .log_generator import LogGenerator
class HistogramLogGenerator(LogGenerator): class HistogramLogGenerator(LogGenerator):
""" """
Log generator for histogram data. Log generator for histogram data.
This is a log generator writing histogram data. User can use it to generate fake This is a log generator writing histogram data. User can use it to generate fake
summary logs about histogram. summary logs about histogram.
""" """
def generate_event(self, values): def generate_event(self, values):
""" """
Method for generating histogram event. Method for generating histogram event.
Args: Args:
values (dict): A dict contains: values (dict): A dict contains:
{ {
wall_time (float): Timestamp. wall_time (float): Timestamp.
step (int): Train step. step (int): Train step.
value (float): Histogram value. value (float): Histogram value.
tag (str): Tag name. tag (str): Tag name.
} }
Returns: Returns:
summary_pb2.Event. summary_pb2.Event.
""" """
histogram_event = summary_pb2.Event() histogram_event = summary_pb2.Event()
histogram_event.wall_time = values.get('wall_time') histogram_event.wall_time = values.get('wall_time')
histogram_event.step = values.get('step') histogram_event.step = values.get('step')
value = histogram_event.summary.value.add() value = histogram_event.summary.value.add()
value.tag = values.get('tag') value.tag = values.get('tag')
buckets = values.get('buckets') buckets = values.get('buckets')
for bucket in buckets: for bucket in buckets:
left, width, count = bucket left, width, count = bucket
bucket = value.histogram.buckets.add() bucket = value.histogram.buckets.add()
bucket.left = left bucket.left = left
bucket.width = width bucket.width = width
bucket.count = count bucket.count = count
return histogram_event value.histogram.min = values.get("min", -1)
value.histogram.max = values.get("max", -1)
def generate_log(self, file_path, steps_list, tag_name):
""" return histogram_event
Generate log for external calls.
def generate_log(self, file_path, steps_list, tag_name):
Args: """
file_path (str): Path to write logs. Generate log for external calls.
steps_list (list): A list consists of step.
tag_name (str): Tag name. Args:
file_path (str): Path to write logs.
Returns: steps_list (list): A list consists of step.
list[dict], generated histogram metadata. tag_name (str): Tag name.
None, to be consistent with return value of HistogramGenerator.
Returns:
""" list[dict], generated histogram metadata.
histogram_metadata = [] None, to be consistent with return value of HistogramGenerator.
for step in steps_list:
histogram = dict() """
histogram_metadata = []
wall_time = time.time() for step in steps_list:
histogram.update({'wall_time': wall_time}) histogram = dict()
histogram.update({'step': step})
histogram.update({'tag': tag_name}) wall_time = time.time()
histogram.update({'wall_time': wall_time})
# Construct buckets histogram.update({'step': step})
buckets = [] histogram.update({'tag': tag_name})
leftmost = list(np.random.randn(11))
leftmost.sort() # Construct buckets
for i in range(10): buckets = []
left = leftmost[i] leftmost = list(np.random.randn(11))
width = leftmost[i+1] - left leftmost.sort()
count = np.random.randint(20) min_val = leftmost[0]
bucket = [left, width, count] max_val = leftmost[-1]
buckets.append(bucket) for i in range(10):
left = leftmost[i]
histogram.update({'buckets': buckets}) width = leftmost[i+1] - left
histogram_metadata.append(histogram) count = np.random.randint(20)
bucket = [left, width, count]
self._write_log_one_step(file_path, histogram) buckets.append(bucket)
return histogram_metadata, None histogram.update({'buckets': buckets, "min": min_val, "max": max_val})
histogram_metadata.append(histogram)
if __name__ == "__main__": self._write_log_one_step(file_path, histogram)
histogram_log_generator = HistogramLogGenerator()
test_file_name = '%s.%s.%s' % ('histogram', 'summary', str(time.time())) return histogram_metadata, None
test_steps = [1, 3, 5]
test_tag = "test_histogram_tag_name"
histogram_log_generator.generate_log(test_file_name, test_steps, test_tag) if __name__ == "__main__":
histogram_log_generator = HistogramLogGenerator()
test_file_name = '%s.%s.%s' % ('histogram', 'summary', str(time.time()))
test_steps = [1, 3, 5]
test_tag = "test_histogram_tag_name"
histogram_log_generator.generate_log(test_file_name, test_steps, test_tag)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册