提交 422bd615 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!522 Add a Chinese README document for MindInsight

Merge pull request !522 from ougongchang/fix_readme
MindInsight provides MindSpore with easy-to-use debugging and tuning capabilities. It
enables users to visualize the experiments. The features of MindInsight are as follows.
[简体中文](./README.md)
- Visualization of training process:
Provide visualization of training process information,
such as computation graph, training process metrics, etc.
- Traceability of training result:
Provide visualization of model parameters information,
such as training data, model accuracy, etc.
- Visualization of training performance:
Provide visualization of training performance information, such as operator execution time,
data input pipeline performance, etc.
# Index
- [More about MindInsight](#more-about-mindinsight)
- [Introduction ](#introduction)
- [Installation](#installation)
- [QuickStart](#quickstart)
- [Docs](#docs)
- [Community](#community)
- [Governance](#governance)
- [Communication](#communication)
- [Contributing](#contributing)
- [Release Notes](#release-notes)
- [License](#license)
# More about MindInsight
The architecture diagram of MindInsight is illustrated as follows:
## Introduction
MindInsight provides MindSpore with easy-to-use debugging and tuning capabilities. During the training, data such as scalar, tensor, image, computational graph, model hyper parameter and training’s execution time can be recorded in the file for viewing and analysis through the visual page of MindInsight.
![MindInsight Architecture](docs/arch.png)
Click to view the [Design document](https://www.mindspore.cn/docs/en/master/design.html),learn more about the design.
Click to view the [Tutorial documentation](https://www.mindspore.cn/tutorial/en/master/advanced_use/visualization_tutorials.html) learn more about the MindInsight tutorial.
## Summary log file
The summary log file consists of a series of operation events. Each event contains
the necessary data for visualization.
MindSpore uses the Callback mechanism to record graph, scalar, image and model
information into summary log file.
- The scalar and image is recorded by Summary operator.
- The computation graph is recorded by SummaryRecord after it was compiled.
- The model parameters is recorded by TrainLineage or EvalLineage.
MindInsight provides the capability to analyze summary log files and visualize
relative information.
## Visualization
MindInsight provides users with a full-process visualized GUI during
AI development, in order to help model developers to improve the model
precision efficiently.
MindInsight has the following visualization capabilities:
## Installation
Download whl package from [MindSpore download page](https://www.mindspore.cn/versions/en), and install the package.
### Graph visualization
```
pip install -U mindinsight-{version}-cp37-cp37m-linux_{arch}.whl
```
The GUI of MindInsight displays the structure of neural network, the data flow and control
flow of each operator during the entire training process.
For more details on how to install MindInsight, click on the MindInsight section of the [installation tutorial](https://www.mindspore.cn/install/en).
### Scalar visualization
## Quick Start
Before using MindInsight, the data in the training process should be recorded. When starting MindInsight, the directory of the saved data should be specified. After successful startup, the data can be viewed through the web page. Here is a brief introduction to recording training data, as well as starting and stopping MindInsight.
The GUI of MindInsight displays the change tendency of a specific scalar during the entire
training process, such as loss value and accuracy rate of each iteration.
[SummaryCollector](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.train.html?highlight=summarycollector#mindspore.train.callback.SummaryCollector) is the interface MindSpore provides for a quick and easy collection of common data about computational graphs, loss values, learning rates, parameter weights, and so on. Below is an example of using `SummaryCollector` for data collection, specifying the directory where the data is stored in `./summary_dir`.
```
...
Two scalar curves can be combined and displayed in one chart.
from mindspore.train.callback import SummaryCollector
summary_collector = SummaryCollector(summary_dir='./summary_dir')
model.train(epoch=1, ds_train, callbacks=[summary_collector])
```
### Parameter distribution
For more ways to record visual data, see the [MindInsight Tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/visualization_tutorials.html).
The GUI of MindInsight displays the distribution change tendency of a tensor such as weight
or gradient during the entire training process.
After you've collected the data, when you launch MindInsight, specify the directory in which the data has been stored.
```
mindinsight start --summary-base-dir ./summary_dir
```
### Image visualization
After successful startup, visit `http://127.0.0.1:8080` through the browser to view the web page.
The GUI of MindInsight displays both original images and enhanced images during the entire
training process.
Command of stopping the MindInsight service:
```
mindinsight stop
```
### Model lineage visualization
## Docs
More details about installation guide, tutorials and APIs, please see the
[User Documentation](https://gitee.com/mindspore/docs).
The GUI of MindInsight displays the parameters and metrics of all models, such as the
learning rate, the number of samples and the loss function of each model.
## Community
### Governance
Check out how MindSpore Open Governance [works](https://gitee.com/mindspore/community/blob/master/governance.md).
### Dataset Graph visualization
### Communication
- [MindSpore Slack](https://join.slack.com/t/mindspore/shared_invite/zt-dgk65rli-3ex4xvS4wHX7UDmsQmfu8w) - Communication platform for developers.
- IRC channel at `#mindspore` (only for meeting minutes logging purpose)
- Video Conferencing: TBD
- Mailing-list: <https://mailweb.mindspore.cn/postorius/lists>
The GUI of MindInsight displays the pipeline of dataset processing and augmentation.
### Dataset Lineage visualization
The GUI of MindInsight displays the parameters and operations of the dataset processing and augmentation.
### Performance visualization
The GUI of MindInsight displays the performance data of the neural networks.
# Installation
See [Install MindInsight](https://www.mindspore.cn/install/en).
# QuickStart
See [guidance](https://www.mindspore.cn/tutorial/en/master/advanced_use/visualization_tutorials.html)
# Docs
See [API Reference](https://www.mindspore.cn/api/en/master/index.html)
# Community
- [MindSpore Slack](https://join.slack.com/t/mindspore/shared_invite/enQtOTcwMTIxMDI3NjM0LTNkMWM2MzI5NjIyZWU5ZWQ5M2EwMTQ5MWNiYzMxOGM4OWFhZjI4M2E5OGI2YTg3ODU1ODE2Njg1MThiNWI3YmQ) - Communication platform for developers.
# Contributing
Welcome contributions. See our [Contributor Wiki](https://gitee.com/mindspore/mindspore/blob/master/CONTRIBUTING.md) for more details.
# Release Notes
## Contributing
Welcome contributions. See our [Contributor Wiki](https://gitee.com/mindspore/mindspore/blob/master/CONTRIBUTING.md) for
more details.
## Release Notes
The release notes, see our [RELEASE](RELEASE.md).
# License
## License
[Apache License 2.0](LICENSE)
[View English](./README.md)
- [介绍](#介绍)
- [安装](#安装)
- [快速入门](#快速入门)
- [文档](#文档)
- [社区](#社区)
- [治理](#治理)
- [交流](#交流)
- [贡献](#贡献)
- [版本说明](#版本说明)
- [许可证](#许可证)
## 介绍
MindInsight为MindSpore提供了简单易用的调优调试能力。在训练过程中,可以将标量、张量、图像、计算图、模型超参、训练耗时等数据记录到文件中,通过MindInsight可视化页面进行查看及分析。
![MindInsight Architecture](docs/arch.png)
点击查看[设计文档](https://www.mindspore.cn/docs/zh-CN/master/design.html),了解更多设计详情。
点击查看[教程文档](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/visualization_tutorials.html),了解更多MindInsight教程。
## 安装
请从[MindSpore下载页面](https://www.mindspore.cn/versions)下载并安装whl包。
```
pip install mindinsight-{version}-cp37-cp37m-linux_{arch}.whl
```
更多MindInsight的安装方法,请点击[安装教程](https://www.mindspore.cn/install/)中的MindInsight章节进行查看。
## 快速入门
使用MindInsight前,需要先将训练过程中的数据记录下来,启动MindInsight时,指定所保存的数据的位置,启动成功后,
即可通过可视化页面查看数据。下面将简单介绍记录训练过程数据,以及启动、停止MindInsight服务。
[SummaryCollector](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.train.html?highlight=summarycollector#mindspore.train.callback.SummaryCollector)是MindSpore提供的快速简易地收集一些常见信息的接口,收集的信息包括计算图、损失值、学习率、参数权重等。
下面是使用 `SummaryCollector` 进行数据收集的示例,其中指定存放数据的目录为 `./summary_dir`
```
...
from mindspore.train.callback import SummaryCollector
summary_collector = SummaryCollector(summary_dir='./summary_dir')
model.train(epoch=1, ds_train, callbacks=[summary_collector])
```
更多记录可视化数据的方法,请点击查看[MindInsight使用教程](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/visualization_tutorials.html)
收集好数据后,启动MindInsight时指定存放数据的目录。
```
mindinsight start --summary-base-dir ./summary_dir
```
启动成功后,通过浏览器访问 `http://127.0.0.1:8080`,查看可视化页面。
停止MindInsight服务的命令:
```
mindinsight stop
```
## 文档
有关安装指南、教程和API的更多详细信息,请参阅[用户文档](https://gitee.com/mindspore/docs)
## 社区
### 治理
查看MindSpore如何进行[开放治理](https://gitee.com/mindspore/community/blob/master/governance.md)
### 交流
- [MindSpore Slack](https://join.slack.com/t/mindspore/shared_invite/zt-dgk65rli-3ex4xvS4wHX7UDmsQmfu8w) 开发者交流平台。
- `#mindspore`IRC频道(仅用于会议记录)
- 视频会议:待定
- 邮件列表:<https://mailweb.mindspore.cn/postorius/lists>
## 贡献
欢迎参与贡献。更多详情,请参阅我们的[贡献者Wiki](https://gitee.com/mindspore/mindspore/blob/master/CONTRIBUTING.md)
## 版本说明
版本说明请参阅[RELEASE](RELEASE.md)
## 许可证
[Apache License 2.0](LICENSE)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册