test_op_analyser.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Fuction:
    Test profiler to watch the performance of training.
Usage:
    pytest tests/st/func/profiler
"""
import os
from unittest import mock

import pytest

from mindinsight.profiler import Profiler
from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory
from mindinsight.profiler.parser.framework_parser import FrameworkParser
from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR
from tests.ut.profiler import RAW_DATA_BASE


OP_GATHER_V2_INFO = {
    'col_name': [
        'op_name', 'op_type', 'execution_time', 'subgraph', 'full_op_name', 'op_info'
    ],
    'object': [
        [
            'GatherV2-op55', 'GatherV2', 42.220212142857136, 'Default',
            'Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/'
            '_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55',
            {
                'input_0': {
                    'format': 'DefaultFormat',
                    'data_type': 'NUMBER_TYPE_FLOAT32',
                    'shape': '184696,8'
                },
                'input_1': {
                    'format': 'DefaultFormat',
                    'data_type': 'NUMBER_TYPE_INT32',
                    'shape': '128000,39'
                },
                'output_0': {
                    'format': 'DefaultFormat',
                    'data_type': 'NUMBER_TYPE_FLOAT32',
                    'shape': '128000,39,8'
                }
            }
        ],
        [
            'GatherV2-op33', 'GatherV2', 0.9352293333333332, 'Default',
            'Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/'
            '_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33',
            {
                'input_0': {
                    'format': 'DefaultFormat',
                    'data_type': 'NUMBER_TYPE_FLOAT32',
                    'shape': '184696,1'
                },
                'input_1': {
                    'format': 'DefaultFormat',
                    'data_type': 'NUMBER_TYPE_INT32',
                    'shape': '16000,39'
                },
                'output_0': {
                    'format': 'DefaultFormat',
                    'data_type': 'NUMBER_TYPE_FLOAT32',
                    'shape': '16000,39,1'
                }
            }
        ]
    ],
    'size': 2
}


@pytest.mark.usefixtures('create_summary_dir')
class TestOpAnalyser:
    """Test AICORE and AICPU analyser module."""
    JOB_ID = 'JOB3'

    @classmethod
    def setup_class(cls):
        """Generate parsed files."""
        cls.generate_parsed_files()

    def setup_method(self):
        """Create analyser."""
        self._analyser_aicore_type = AnalyserFactory.instance().get_analyser(
            'aicore_type', self.profiler, '1')
        self._analyser_aicore_detail = AnalyserFactory.instance().get_analyser(
            'aicore_detail', self.profiler, '1')

    @classmethod
    def generate_parsed_files(cls):
        """Test parse raw info about profiler."""
        cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run')
        cls.profiler = os.path.join(cls.summary_dir, 'profiler')
        FrameworkParser._raw_data_dir = RAW_DATA_BASE
        if not os.path.exists(cls.summary_dir):
            os.makedirs(cls.summary_dir)
        Profiler._base_profiling_container_path = os.path.join(RAW_DATA_BASE, 'container')
        with mock.patch('mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH', RAW_DATA_BASE):
            profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False,
                                output_path=cls.summary_dir, job_id=cls.JOB_ID)
            profiler.analyse()

    @pytest.mark.level0
    @pytest.mark.env_single
    @pytest.mark.platform_x86_cpu
    @pytest.mark.platform_arm_ascend_training
    @pytest.mark.platform_x86_gpu_training
    @pytest.mark.platform_x86_ascend_training
    def test_query_aicore_type_1(self):
        """Test the function of querying AICORE operator type infomation."""
        expect_result = {
            'col_name': ['op_type', 'execution_time', 'execution_frequency', 'percent'],
            'object': [
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                ['UnsortedSegmentSum', 44.607826, 2, 35.28],
                ['GatherV2', 43.155441, 2, 34.13],
                ['Slice', 20.376315, 16, 16.12],
                ['Concat', 5.808454, 4, 4.59],
                ['Split', 2.714277, 2, 2.15],
                ['MatMul', 1.936681, 15, 1.53],
                ['Mul', 1.902949, 32, 1.51],
                ['StridedSliceGrad', 1.506834, 2, 1.19],
                ['TransData', 1.115158, 30, 0.88],
                ['ReluGrad', 0.854069, 5, 0.68],
                ['Cast', 0.484685, 15, 0.38],
                ['ReLU', 0.483282, 5, 0.38],
                ['RealDiv', 0.422807, 15, 0.33],
                ['StridedSlice', 0.345569, 2, 0.27],
                ['Adam', 0.285936, 11, 0.23],
                ['BiasAdd', 0.189663, 5, 0.15],
                ['BiasAddGrad', 0.071681, 5, 0.06],
                ['Tile', 0.044158, 4, 0.03],
                ['ReduceSum', 0.030765, 5, 0.02],
                ['ApplyFtrl', 0.025454, 2, 0.02],
                ['AtomicAddrClean', 0.019369, 8, 0.02],
                ['AddN', 0.012836, 1, 0.01],
                ['Square', 0.009799, 1, 0.01],
                ['SigmoidCrossEntropyWithLogitsGrad', 0.009582, 2, 0.01],
                ['TensorAdd', 0.009218, 3, 0.01],
                ['SigmoidCrossEntropyWithLogits', 0.004809, 1, 0.0],
                ['ReduceMean', 0.004535, 1, 0.0],
                ['Assign', 0.002477, 2, 0.0],
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
                ['AssignAdd', 0.001688, 1, 0.0]
            ],
            'size': 29
        }
        condition = {
            'sort_condition': {
                'name': 'execution_time',
                'type': 'descending'
            }
        }
        result = self._analyser_aicore_type.query(condition)
        assert expect_result == result

    @pytest.mark.level0
    @pytest.mark.env_single
    @pytest.mark.platform_x86_cpu
    @pytest.mark.platform_arm_ascend_training
    @pytest.mark.platform_x86_gpu_training
    @pytest.mark.platform_x86_ascend_training
    def test_query_aicore_type_2(self):
        """Test the function of querying AICORE operator type infomation."""
        expect_result = {
            'col_name': ['op_type', 'execution_time', 'execution_frequency', 'percent'],
            'object': [
181 182
                ['MatMul', 1.936681, 15, 1.53],
                ['Mul', 1.902949, 32, 1.51]
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
            ],
            'size': 2
        }
        condition = {
            'filter_condition': {
                'op_type': {
                    'partial_match_str_in': ['Mul']
                }
            },
            'sort_condition': {
                'name': 'execution_time',
                'type': 'descending'
            }
        }
        result = self._analyser_aicore_type.query(condition)
        assert expect_result == result

    @pytest.mark.level0
    @pytest.mark.env_single
    @pytest.mark.platform_x86_cpu
    @pytest.mark.platform_arm_ascend_training
    @pytest.mark.platform_x86_gpu_training
    @pytest.mark.platform_x86_ascend_training
    def test_query_aicore_detail_1(self):
        """Test the function of querying AICORE operator detail infomation."""
        expect_result = OP_GATHER_V2_INFO
        condition = {
            'filter_condition': {
                'op_type': {
                    'in': ['GatherV2']
                }
            },
            'sort_condition': {
                'name': 'execution_time',
                'type': 'descending'
            },
            'group_condition': {
                'limit': 10,
                'offset': 0
            }
        }
        result = self._analyser_aicore_detail.query(condition)
        assert expect_result == result