提交 ad008705 编写于 作者: J jin-xiulang

Add ZCDPMonitor and Exponential decay mode.

上级 ac39d193
...@@ -39,9 +39,8 @@ class PrivacyMonitorFactory: ...@@ -39,9 +39,8 @@ class PrivacyMonitorFactory:
Create a privacy monitor class. Create a privacy monitor class.
Args: Args:
policy (str): Monitor policy, 'rdp' is supported by now. RDP policy (str): Monitor policy, 'rdp' and 'zcdp' are supported
means R'enyi differential privacy, which computed based by now.
on R'enyi divergence.
args (Union[int, float, numpy.ndarray, list, str]): Parameters args (Union[int, float, numpy.ndarray, list, str]): Parameters
used for creating a privacy monitor. used for creating a privacy monitor.
kwargs (Union[int, float, numpy.ndarray, list, str]): Keyword kwargs (Union[int, float, numpy.ndarray, list, str]): Keyword
...@@ -56,7 +55,9 @@ class PrivacyMonitorFactory: ...@@ -56,7 +55,9 @@ class PrivacyMonitorFactory:
""" """
if policy == 'rdp': if policy == 'rdp':
return RDPMonitor(*args, **kwargs) return RDPMonitor(*args, **kwargs)
raise ValueError("Only RDP-policy is supported by now") if policy == 'zcdp':
return ZCDPMonitor(*args, **kwargs)
raise ValueError("Only RDP-policy or ZCDP-policy is supported by now")
class RDPMonitor(Callback): class RDPMonitor(Callback):
...@@ -97,24 +98,28 @@ class RDPMonitor(Callback): ...@@ -97,24 +98,28 @@ class RDPMonitor(Callback):
of privacy budget would be different for various orders. In order of privacy budget would be different for various orders. In order
to obtain a tighter (smaller) privacy budget estimation, a list to obtain a tighter (smaller) privacy budget estimation, a list
of orders could be tried. Default: None. of orders could be tried. Default: None.
noise_decay_mode (str): Decay mode of adding noise while training, noise_decay_mode (Union[None, str]): Decay mode of adding noise while
which can be 'no_decay', 'Time' or 'Step'. Default: 'Time'. training, which can be None, 'Time', 'Step' or 'Exp'. Default: 'Time'.
noise_decay_rate (Union[float, None]): Decay rate of noise while noise_decay_rate (float): Decay rate of noise while training. Default: 6e-4.
training. Default: 6e-4.
per_print_times (int): The interval steps of computing and printing per_print_times (int): The interval steps of computing and printing
the privacy budget. Default: 50. the privacy budget. Default: 50.
dataset_sink_mode (bool): If True, all training data would be passed dataset_sink_mode (bool): If True, all training data would be passed
to device(Ascend) at once. If False, training data would be passed to device(Ascend) one-time. If False, training data would be passed
to device after each step training. Default: False. to device after each step training. Default: False.
Examples: Examples:
>>> rdp = PrivacyMonitorFactory.create(policy='rdp',
>>> num_samples=60000, batch_size=256)
>>> network = Net() >>> network = Net()
>>> epochs = 2
>>> net_loss = nn.SoftmaxCrossEntropyWithLogits() >>> net_loss = nn.SoftmaxCrossEntropyWithLogits()
>>> epochs = 2
>>> norm_clip = 1.0
>>> initial_noise_multiplier = 0.01
>>> mech = MechanismsFactory().create('Gaussian',
>>> norm_bound=norm_clip, initial_noise_multiplier=initial_noise_multiplier)
>>> net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) >>> net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
>>> model = Model(network, net_loss, net_opt) >>> model = DPModel(micro_batches=2, norm_clip=norm_clip,
>>> mech=mech, network=network, loss_fn=loss, optimizer=net_opt, metrics=None)
>>> rdp = PrivacyMonitorFactory.create(policy='rdp',
>>> num_samples=60000, batch_size=256)
>>> model.train(epochs, ds, callbacks=[rdp], dataset_sink_mode=False) >>> model.train(epochs, ds, callbacks=[rdp], dataset_sink_mode=False)
""" """
...@@ -150,17 +155,16 @@ class RDPMonitor(Callback): ...@@ -150,17 +155,16 @@ class RDPMonitor(Callback):
msg = 'orders must be greater than 1' msg = 'orders must be greater than 1'
LOGGER.error(TAG, msg) LOGGER.error(TAG, msg)
raise ValueError(msg) raise ValueError(msg)
if noise_decay_mode not in ('no_decay', 'Step', 'Time'): if noise_decay_mode is not None:
msg = "Noise decay mode must be in ('no_decay', 'Step', 'Time')" if noise_decay_mode not in ('Step', 'Time', 'Exp'):
LOGGER.error(TAG, msg) msg = "Noise decay mode must be in ('Step', 'Time', 'Exp')"
raise ValueError(msg) LOGGER.error(TAG, msg)
if noise_decay_rate is not None: raise ValueError(msg)
noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float) noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0) check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
check_int_positive('per_print_times', per_print_times) check_int_positive('per_print_times', per_print_times)
check_param_type('dataset_sink_mode', dataset_sink_mode, bool) check_param_type('dataset_sink_mode', dataset_sink_mode, bool)
self._total_echo_privacy = None
self._num_samples = num_samples self._num_samples = num_samples
self._batch_size = batch_size self._batch_size = batch_size
self._initial_noise_multiplier = initial_noise_multiplier self._initial_noise_multiplier = initial_noise_multiplier
...@@ -232,8 +236,7 @@ class RDPMonitor(Callback): ...@@ -232,8 +236,7 @@ class RDPMonitor(Callback):
if cb_params.cur_step_num % self._per_print_times == 0: if cb_params.cur_step_num % self._per_print_times == 0:
steps = np.arange(cur_step - self._per_print_times, cur_step + 1) steps = np.arange(cur_step - self._per_print_times, cur_step + 1)
eps, delta = self._compute_privacy_steps(list(steps)) eps, delta = self._compute_privacy_steps(list(steps))
if np.isnan(eps) or np.isinf(eps) or np.isnan(delta) or np.isinf( if np.isnan(eps) or np.isinf(eps):
delta):
msg = 'epoch: {} step: {}, invalid eps, terminating ' \ msg = 'epoch: {} step: {}, invalid eps, terminating ' \
'training.'.format( 'training.'.format(
cb_params.cur_epoch_num, cur_step_in_epoch) cb_params.cur_epoch_num, cur_step_in_epoch)
...@@ -265,15 +268,10 @@ class RDPMonitor(Callback): ...@@ -265,15 +268,10 @@ class RDPMonitor(Callback):
sampling_rate = self._batch_size / self._num_samples sampling_rate = self._batch_size / self._num_samples
noise_stddev_step = self._initial_noise_multiplier noise_stddev_step = self._initial_noise_multiplier
if self._noise_decay_mode == 'no_decay': if self._noise_decay_mode is None:
self._rdp += self._compute_rdp(sampling_rate, noise_stddev_step)*len( self._rdp += self._compute_rdp(sampling_rate, noise_stddev_step)*len(
steps) steps)
else: else:
if self._noise_decay_rate is None:
msg = 'noise_decay_rate in decay-mode cannot be None'
LOGGER.error(TAG, msg)
raise ValueError(msg)
if self._noise_decay_mode == 'Time': if self._noise_decay_mode == 'Time':
noise_stddev_step = [self._initial_noise_multiplier / ( noise_stddev_step = [self._initial_noise_multiplier / (
1 + self._noise_decay_rate*step) for step in steps] 1 + self._noise_decay_rate*step) for step in steps]
...@@ -281,6 +279,9 @@ class RDPMonitor(Callback): ...@@ -281,6 +279,9 @@ class RDPMonitor(Callback):
elif self._noise_decay_mode == 'Step': elif self._noise_decay_mode == 'Step':
noise_stddev_step = [self._initial_noise_multiplier*( noise_stddev_step = [self._initial_noise_multiplier*(
1 - self._noise_decay_rate)**step for step in steps] 1 - self._noise_decay_rate)**step for step in steps]
elif self._noise_decay_mode == 'Exp':
noise_stddev_step = [self._initial_noise_multiplier*np.exp(
-step*self._noise_decay_rate) for step in steps]
self._rdp += sum( self._rdp += sum(
[self._compute_rdp(sampling_rate, noise) for noise in [self._compute_rdp(sampling_rate, noise) for noise in
noise_stddev_step]) noise_stddev_step])
...@@ -352,6 +353,203 @@ class RDPMonitor(Callback): ...@@ -352,6 +353,203 @@ class RDPMonitor(Callback):
return np.min(eps) return np.min(eps)
class ZCDPMonitor(Callback):
r"""
Compute the privacy budget of DP training based on zero-concentrated
differential privacy theory (zcdp). According to the reference below,
if a randomized mechanism is said to have ρ-zCDP, it also satisfies
conventional differential privacy (ε, δ) as below:
.. math::
(ρ+2\sqrt{ρlog(1/δ)}, δ)
Reference: `Concentrated Differentially Private Gradient Descent with
Adaptive per-Iteration Privacy Budget <https://arxiv.org/abs/1808.09501>`_
Args:
num_samples (int): The total number of samples in training data sets.
batch_size (int): The number of samples in a batch while training.
initial_noise_multiplier (Union[float, int]): Ratio of the standard
deviation of Gaussian noise divided by the norm_bound, which will
be used to calculate privacy spent. Default: 1.5.
max_eps (Union[float, int]): The maximum acceptable epsilon budget for
DP training, which is used for estimating the max training epochs.
Default: 10.0.
target_delta (Union[float, int]): Target delta budget for DP training.
If target_delta is set to be δ, then the privacy budget δ would be
fixed during the whole training process. Default: 1e-3.
noise_decay_mode (Union[None, str]): Decay mode of adding noise while
training, which can be None, 'Time', 'Step' or 'Exp'. Default: 'Time'.
noise_decay_rate (float): Decay rate of noise while training. Default: 6e-4.
per_print_times (int): The interval steps of computing and printing
the privacy budget. Default: 50.
dataset_sink_mode (bool): If True, all training data would be passed
to device(Ascend) one-time. If False, training data would be passed
to device after each step training. Default: False.
Examples:
>>> network = Net()
>>> net_loss = nn.SoftmaxCrossEntropyWithLogits()
>>> epochs = 2
>>> norm_clip = 1.0
>>> initial_noise_multiplier = 0.01
>>> mech = MechanismsFactory().create('Gaussian',
>>> norm_bound=norm_clip, initial_noise_multiplier=initial_noise_multiplier)
>>> net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
>>> model = DPModel(micro_batches=2, norm_clip=norm_clip,
>>> mech=mech, network=network, loss_fn=loss, optimizer=net_opt, metrics=None)
>>> rdp = PrivacyMonitorFactory.create(policy='rdp',
>>> num_samples=60000, batch_size=256)
>>> model.train(epochs, ds, callbacks=[rdp], dataset_sink_mode=False)
"""
def __init__(self, num_samples, batch_size, initial_noise_multiplier=1.5,
max_eps=10.0, target_delta=1e-3, noise_decay_mode='Time',
noise_decay_rate=6e-4, per_print_times=50, dataset_sink_mode=False):
super(ZCDPMonitor, self).__init__()
check_int_positive('num_samples', num_samples)
check_int_positive('batch_size', batch_size)
if batch_size >= num_samples:
msg = 'Batch_size must be less than num_samples.'
LOGGER.error(TAG, msg)
raise ValueError(msg)
check_value_positive('initial_noise_multiplier',
initial_noise_multiplier)
if noise_decay_mode is not None:
if noise_decay_mode not in ('Step', 'Time', 'Exp'):
msg = "Noise decay mode must be in ('Step', 'Time', 'Exp')"
LOGGER.error(TAG, msg)
raise ValueError(msg)
noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
check_int_positive('per_print_times', per_print_times)
check_param_type('dataset_sink_mode', dataset_sink_mode, bool)
self._num_samples = num_samples
self._batch_size = batch_size
self._initial_noise_multiplier = initial_noise_multiplier
self._max_eps = check_value_positive('max_eps', max_eps)
self._target_delta = check_param_in_range('target_delta', target_delta, 0.0, 1.0)
self._noise_decay_mode = noise_decay_mode
self._noise_decay_rate = noise_decay_rate
# initialize zcdp
self._zcdp = 0
self._per_print_times = per_print_times
if dataset_sink_mode:
self._per_print_times = int(self._num_samples / self._batch_size)
def max_epoch_suggest(self):
"""
Estimate the maximum training epochs to satisfy the predefined
privacy budget.
Returns:
int, the recommended maximum training epochs.
Examples:
>>> zcdp = PrivacyMonitorFactory.create(policy='zcdp',
>>> num_samples=60000, batch_size=32)
>>> suggest_epoch = zcdp.max_epoch_suggest()
"""
epoch = 1
while epoch < 10000:
steps = self._num_samples // self._batch_size
eps, _ = self._compute_privacy_steps(
list(np.arange((epoch - 1)*steps, epoch*steps + 1)))
if eps <= self._max_eps:
epoch += 1
else:
break
# initialize the zcdp for model training
self._zcdp = 0
return epoch
def step_end(self, run_context):
"""
Compute privacy budget after each training step.
Args:
run_context (RunContext): Include some information of the model.
"""
cb_params = run_context.original_args()
cur_step = cb_params.cur_step_num
cur_step_in_epoch = (cb_params.cur_step_num - 1) % \
cb_params.batch_num + 1
if cb_params.cur_step_num % self._per_print_times == 0:
steps = np.arange(cur_step - self._per_print_times, cur_step + 1)
eps, delta = self._compute_privacy_steps(list(steps))
if np.isnan(eps) or np.isinf(eps) or np.isnan(delta) or np.isinf(
delta):
msg = 'epoch: {} step: {}, invalid eps, terminating ' \
'training.'.format(
cb_params.cur_epoch_num, cur_step_in_epoch)
LOGGER.error(TAG, msg)
raise ValueError(msg)
print("epoch: %s step: %s, delta is %s, eps is %s" % (
cb_params.cur_epoch_num, cur_step_in_epoch, delta, eps))
def _compute_privacy_steps(self, steps):
"""
Compute privacy budget corresponding to steps.
Args:
steps (list): Training steps.
Returns:
float, privacy budget.
"""
noise_stddev_step = self._initial_noise_multiplier
if self._noise_decay_mode is None:
self._zcdp += self._compute_zcdp(noise_stddev_step)*len(
steps)
else:
if self._noise_decay_mode == 'Time':
noise_stddev_step = [self._initial_noise_multiplier / (
1 + self._noise_decay_rate*step) for step in steps]
elif self._noise_decay_mode == 'Step':
noise_stddev_step = [self._initial_noise_multiplier*(
1 - self._noise_decay_rate)**step for step in steps]
elif self._noise_decay_mode == 'Exp':
noise_stddev_step = [self._initial_noise_multiplier*np.exp(
-step*self._noise_decay_rate) for step in steps]
self._zcdp += sum(
[self._compute_zcdp(noise) for noise in noise_stddev_step])
eps = self._compute_eps(self._zcdp)
return eps, self._target_delta
def _compute_zcdp(self, noise_stddev):
"""
Compute zcdp according to added noise.
Args:
noise_stddev (float): Noise multiplier.
Returns:
float or numpy.ndarray, zcdp values.
"""
zcdp = 1 / (2*noise_stddev**2)
return zcdp
def _compute_eps(self, zcdp):
"""
Compute eps for given zcdp and delta.
Args:
zcdp (Union[float, numpy.ndarray]): zero-concentrated
differential privacy.
Returns:
float, eps budget.
"""
eps = zcdp + 2*np.sqrt(zcdp*np.log(1 / self._target_delta))
return eps
def _compute_rdp_with_order(sample_rate, noise_stddev, order): def _compute_rdp_with_order(sample_rate, noise_stddev, order):
""" """
Compute rdp for each order. Compute rdp for each order.
......
...@@ -53,7 +53,7 @@ def test_dp_monitor(): ...@@ -53,7 +53,7 @@ def test_dp_monitor():
rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000, rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000,
batch_size=batch_size, batch_size=batch_size,
initial_noise_multiplier=0.4, initial_noise_multiplier=0.4,
noise_decay_rate=6e-5) noise_decay_rate=6e-3)
suggest_epoch = rdp.max_epoch_suggest() suggest_epoch = rdp.max_epoch_suggest()
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s', LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
suggest_epoch) suggest_epoch)
...@@ -83,7 +83,7 @@ def test_dp_monitor_gpu(): ...@@ -83,7 +83,7 @@ def test_dp_monitor_gpu():
rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000, rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000,
batch_size=batch_size, batch_size=batch_size,
initial_noise_multiplier=0.4, initial_noise_multiplier=0.4,
noise_decay_rate=6e-5) noise_decay_rate=6e-3)
suggest_epoch = rdp.max_epoch_suggest() suggest_epoch = rdp.max_epoch_suggest()
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s', LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
suggest_epoch) suggest_epoch)
...@@ -113,7 +113,7 @@ def test_dp_monitor_cpu(): ...@@ -113,7 +113,7 @@ def test_dp_monitor_cpu():
rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000, rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000,
batch_size=batch_size, batch_size=batch_size,
initial_noise_multiplier=0.4, initial_noise_multiplier=0.4,
noise_decay_rate=6e-5) noise_decay_rate=6e-3)
suggest_epoch = rdp.max_epoch_suggest() suggest_epoch = rdp.max_epoch_suggest()
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s', LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
suggest_epoch) suggest_epoch)
...@@ -129,3 +129,94 @@ def test_dp_monitor_cpu(): ...@@ -129,3 +129,94 @@ def test_dp_monitor_cpu():
["data", "label"]) ["data", "label"])
ds1.set_dataset_size(batch_size * batches) ds1.set_dataset_size(batch_size * batches)
model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_dp_monitor_zcdp():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
batch_size = 16
batches = 128
epochs = 1
zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000,
batch_size=batch_size,
initial_noise_multiplier=0.4,
noise_decay_rate=6e-3)
suggest_epoch = zcdp.max_epoch_suggest()
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
suggest_epoch)
network = LeNet5()
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True,
reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
model = Model(network, net_loss, net_opt)
LOGGER.info(TAG, "============== Starting Training ==============")
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches),
["data", "label"])
ds1.set_dataset_size(batch_size * batches)
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_inference
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_dp_monitor_zcdp_gpu():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
batch_size = 16
batches = 128
epochs = 1
zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000,
batch_size=batch_size,
initial_noise_multiplier=0.4,
noise_decay_rate=6e-3)
suggest_epoch = zcdp.max_epoch_suggest()
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
suggest_epoch)
network = LeNet5()
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True,
reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
model = Model(network, net_loss, net_opt)
LOGGER.info(TAG, "============== Starting Training ==============")
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches),
["data", "label"])
ds1.set_dataset_size(batch_size * batches)
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_dp_monitor_zcdp_cpu():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
batch_size = 16
batches = 128
epochs = 1
zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000,
batch_size=batch_size,
initial_noise_multiplier=0.4,
noise_decay_rate=6e-3)
suggest_epoch = zcdp.max_epoch_suggest()
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
suggest_epoch)
network = LeNet5()
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True,
reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
model = Model(network, net_loss, net_opt)
LOGGER.info(TAG, "============== Starting Training ==============")
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches),
["data", "label"])
ds1.set_dataset_size(batch_size * batches)
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册