Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindarmour
提交
8f370bc1
M
mindarmour
项目概览
MindSpore
/
mindarmour
通知
4
Star
2
Fork
3
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindarmour
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
8f370bc1
编写于
7月 28, 2020
作者:
Z
zhenghuanhuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix issue.
上级
dff8f9b2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
191 addition
and
0 deletion
+191
-0
example/mnist_demo/dp_ada_sgd_graph_config.py
example/mnist_demo/dp_ada_sgd_graph_config.py
+41
-0
example/mnist_demo/lenet5_dp_ada_sgd_graph.py
example/mnist_demo/lenet5_dp_ada_sgd_graph.py
+150
-0
未找到文件。
example/mnist_demo/dp_ada_sgd_graph_config.py
0 → 100644
浏览文件 @
8f370bc1
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in train.py
"""
from
easydict
import
EasyDict
as
edict
mnist_cfg
=
edict
({
'num_classes'
:
10
,
# the number of classes of model's output
'lr'
:
0.001
,
# the learning rate of model's optimizer
'momentum'
:
0.9
,
# the momentum value of model's optimizer
'epoch_size'
:
20
,
# training epochs
'batch_size'
:
256
,
# batch size for training
'image_height'
:
32
,
# the height of training samples
'image_width'
:
32
,
# the width of training samples
'save_checkpoint_steps'
:
234
,
# the interval steps for saving checkpoint file of the model
'keep_checkpoint_max'
:
10
,
# the maximum number of checkpoint files would be saved
'device_target'
:
'Ascend'
,
# device used
'data_path'
:
'./MNIST_unzip'
,
# the path of training and testing data set
'dataset_sink_mode'
:
False
,
# whether deliver all training data to device one time
'micro_batches'
:
16
,
# the number of small batches split from an original batch
'norm_bound'
:
1.0
,
# the clip bound of the gradients of model's training parameters
'initial_noise_multiplier'
:
0.05
,
# the initial multiplication coefficient of the noise added to training
# parameters' gradients
'decay_policy'
:
'Step'
,
'noise_mechanisms'
:
'AdaGaussian'
,
# the method of adding noise in gradients while training
'optimizer'
:
'SGD'
# the base optimizer used for Differential privacy training
})
example/mnist_demo/lenet5_dp_ada_sgd_graph.py
0 → 100644
浏览文件 @
8f370bc1
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training example of adaGaussian-mechanism differential privacy.
"""
import
os
import
mindspore.nn
as
nn
from
mindspore
import
context
from
mindspore.train.callback
import
ModelCheckpoint
from
mindspore.train.callback
import
CheckpointConfig
from
mindspore.train.callback
import
LossMonitor
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.vision.c_transforms
as
CV
import
mindspore.dataset.transforms.c_transforms
as
C
from
mindspore.dataset.transforms.vision
import
Inter
import
mindspore.common.dtype
as
mstype
from
mindarmour.diff_privacy
import
DPModel
from
mindarmour.diff_privacy
import
PrivacyMonitorFactory
from
mindarmour.diff_privacy
import
NoiseMechanismsFactory
from
mindarmour.utils.logger
import
LogUtil
from
lenet5_net
import
LeNet5
from
dp_ada_sgd_graph_config
import
mnist_cfg
as
cfg
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'Lenet5_train'
def
generate_mnist_dataset
(
data_path
,
batch_size
=
32
,
repeat_size
=
1
,
num_parallel_workers
=
1
,
sparse
=
True
):
"""
create dataset for training or testing
"""
# define dataset
ds1
=
ds
.
MnistDataset
(
data_path
)
# define operation parameters
resize_height
,
resize_width
=
32
,
32
rescale
=
1.0
/
255.0
shift
=
0.0
# define map operations
resize_op
=
CV
.
Resize
((
resize_height
,
resize_width
),
interpolation
=
Inter
.
LINEAR
)
rescale_op
=
CV
.
Rescale
(
rescale
,
shift
)
hwc2chw_op
=
CV
.
HWC2CHW
()
type_cast_op
=
C
.
TypeCast
(
mstype
.
int32
)
# apply map operations on images
if
not
sparse
:
one_hot_enco
=
C
.
OneHot
(
10
)
ds1
=
ds1
.
map
(
input_columns
=
"label"
,
operations
=
one_hot_enco
,
num_parallel_workers
=
num_parallel_workers
)
type_cast_op
=
C
.
TypeCast
(
mstype
.
float32
)
ds1
=
ds1
.
map
(
input_columns
=
"label"
,
operations
=
type_cast_op
,
num_parallel_workers
=
num_parallel_workers
)
ds1
=
ds1
.
map
(
input_columns
=
"image"
,
operations
=
resize_op
,
num_parallel_workers
=
num_parallel_workers
)
ds1
=
ds1
.
map
(
input_columns
=
"image"
,
operations
=
rescale_op
,
num_parallel_workers
=
num_parallel_workers
)
ds1
=
ds1
.
map
(
input_columns
=
"image"
,
operations
=
hwc2chw_op
,
num_parallel_workers
=
num_parallel_workers
)
# apply DatasetOps
buffer_size
=
10000
ds1
=
ds1
.
shuffle
(
buffer_size
=
buffer_size
)
ds1
=
ds1
.
batch
(
batch_size
,
drop_remainder
=
True
)
ds1
=
ds1
.
repeat
(
repeat_size
)
return
ds1
if
__name__
==
"__main__"
:
# This configure can run both in pynative mode and graph mode
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
cfg
.
device_target
)
network
=
LeNet5
()
net_loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
,
reduction
=
"mean"
)
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"checkpoint_lenet"
,
directory
=
'./trained_ckpt_file/'
,
config
=
config_ck
)
# get training dataset
ds_train
=
generate_mnist_dataset
(
os
.
path
.
join
(
cfg
.
data_path
,
"train"
),
cfg
.
batch_size
)
if
cfg
.
micro_batches
and
cfg
.
batch_size
%
cfg
.
micro_batches
!=
0
:
raise
ValueError
(
"Number of micro_batches should divide evenly batch_size"
)
# Create a factory class of DP noise mechanisms, this method is adding noise
# in gradients while training. Initial_noise_multiplier is suggested to be
# greater than 1.0, otherwise the privacy budget would be huge, which means
# that the privacy protection effect is weak. Mechanisms can be 'Gaussian'
# or 'AdaGaussian', in which noise would be decayed with 'AdaGaussian'
# mechanism while be constant with 'Gaussian' mechanism.
noise_mech
=
NoiseMechanismsFactory
().
create
(
cfg
.
noise_mechanisms
,
norm_bound
=
cfg
.
norm_bound
,
initial_noise_multiplier
=
cfg
.
initial_noise_multiplier
,
decay_policy
=
cfg
.
decay_policy
)
net_opt
=
nn
.
SGD
(
params
=
network
.
trainable_params
(),
learning_rate
=
cfg
.
lr
,
momentum
=
cfg
.
momentum
)
# Create a monitor for DP training. The function of the monitor is to
# compute and print the privacy budget(eps and delta) while training.
rdp_monitor
=
PrivacyMonitorFactory
.
create
(
'rdp'
,
num_samples
=
60000
,
batch_size
=
cfg
.
batch_size
,
initial_noise_multiplier
=
cfg
.
initial_noise_multiplier
,
per_print_times
=
234
)
# Create the DP model for training.
model
=
DPModel
(
micro_batches
=
cfg
.
micro_batches
,
norm_bound
=
cfg
.
norm_bound
,
noise_mech
=
noise_mech
,
network
=
network
,
loss_fn
=
net_loss
,
optimizer
=
net_opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
LOGGER
.
info
(
TAG
,
"============== Starting Training =============="
)
model
.
train
(
cfg
[
'epoch_size'
],
ds_train
,
callbacks
=
[
ckpoint_cb
,
LossMonitor
(),
rdp_monitor
],
dataset_sink_mode
=
cfg
.
dataset_sink_mode
)
LOGGER
.
info
(
TAG
,
"============== Starting Testing =============="
)
ckpt_file_name
=
'trained_ckpt_file/checkpoint_lenet-'
+
str
(
cfg
.
epoch_size
)
+
'_234.ckpt'
param_dict
=
load_checkpoint
(
ckpt_file_name
)
load_param_into_net
(
network
,
param_dict
)
ds_eval
=
generate_mnist_dataset
(
os
.
path
.
join
(
cfg
.
data_path
,
'test'
),
batch_size
=
cfg
.
batch_size
)
acc
=
model
.
eval
(
ds_eval
,
dataset_sink_mode
=
False
)
LOGGER
.
info
(
TAG
,
"============== Accuracy: %s =============="
,
acc
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录