Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindarmour
提交
88ed459c
M
mindarmour
项目概览
MindSpore
/
mindarmour
通知
4
Star
2
Fork
3
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindarmour
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
88ed459c
编写于
5月 29, 2020
作者:
J
jin-xiulang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Tuning the MNIST example of Differential privacy training.
上级
f3baf9db
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
33 addition
and
31 deletion
+33
-31
example/mnist_demo/lenet5_config.py
example/mnist_demo/lenet5_config.py
+2
-2
example/mnist_demo/lenet5_dp_model_train.py
example/mnist_demo/lenet5_dp_model_train.py
+10
-8
example/mnist_demo/lenet5_net.py
example/mnist_demo/lenet5_net.py
+1
-1
mindarmour/diff_privacy/mechanisms/mechanisms.py
mindarmour/diff_privacy/mechanisms/mechanisms.py
+5
-5
mindarmour/diff_privacy/monitor/monitor.py
mindarmour/diff_privacy/monitor/monitor.py
+12
-12
mindarmour/diff_privacy/optimizer/optimizer.py
mindarmour/diff_privacy/optimizer/optimizer.py
+2
-2
mindarmour/diff_privacy/train/model.py
mindarmour/diff_privacy/train/model.py
+1
-1
未找到文件。
example/mnist_demo/lenet5_config.py
浏览文件 @
88ed459c
...
...
@@ -23,10 +23,10 @@ mnist_cfg = edict({
'lr'
:
0.01
,
'momentum'
:
0.9
,
'epoch_size'
:
10
,
'batch_size'
:
32
,
'batch_size'
:
256
,
'buffer_size'
:
1000
,
'image_height'
:
32
,
'image_width'
:
32
,
'save_checkpoint_steps'
:
1875
,
'save_checkpoint_steps'
:
234
,
'keep_checkpoint_max'
:
10
,
})
example/mnist_demo/lenet5_dp_model_train.py
浏览文件 @
88ed459c
...
...
@@ -38,6 +38,7 @@ from lenet5_net import LeNet5
from
lenet5_config
import
mnist_cfg
as
cfg
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'Lenet5_train'
...
...
@@ -92,11 +93,11 @@ if __name__ == "__main__":
parser
.
add_argument
(
'--data_path'
,
type
=
str
,
default
=
"./MNIST_unzip"
,
help
=
'path where the dataset is saved'
)
parser
.
add_argument
(
'--dataset_sink_mode'
,
type
=
bool
,
default
=
False
,
help
=
'dataset_sink_mode is False or True'
)
parser
.
add_argument
(
'--micro_batches'
,
type
=
int
,
default
=
None
,
parser
.
add_argument
(
'--micro_batches'
,
type
=
int
,
default
=
32
,
help
=
'optional, if use differential privacy, need to set micro_batches'
)
parser
.
add_argument
(
'--l2_norm_bound'
,
type
=
float
,
default
=
0.1
,
parser
.
add_argument
(
'--l2_norm_bound'
,
type
=
float
,
default
=
1.0
,
help
=
'optional, if use differential privacy, need to set l2_norm_bound'
)
parser
.
add_argument
(
'--initial_noise_multiplier'
,
type
=
float
,
default
=
0.001
,
parser
.
add_argument
(
'--initial_noise_multiplier'
,
type
=
float
,
default
=
1.5
,
help
=
'optional, if use differential privacy, need to set initial_noise_multiplier'
)
args
=
parser
.
parse_args
()
...
...
@@ -120,13 +121,14 @@ if __name__ == "__main__":
gaussian_mech
.
set_mechanisms
(
'Gaussian'
,
norm_bound
=
args
.
l2_norm_bound
,
initial_noise_multiplier
=
args
.
initial_noise_multiplier
)
net_opt
=
gaussian_mech
.
create
(
'
SGD
'
)(
params
=
network
.
trainable_params
(),
learning_rate
=
cfg
.
lr
,
momentum
=
cfg
.
momentum
)
net_opt
=
gaussian_mech
.
create
(
'
Momentum
'
)(
params
=
network
.
trainable_params
(),
learning_rate
=
cfg
.
lr
,
momentum
=
cfg
.
momentum
)
rdp_monitor
=
PrivacyMonitorFactory
.
create
(
'rdp'
,
num_samples
=
60000
,
batch_size
=
cfg
.
batch_size
,
initial_noise_multiplier
=
args
.
initial_noise_multiplier
,
initial_noise_multiplier
=
args
.
initial_noise_multiplier
*
args
.
l2_norm_bound
,
per_print_times
=
10
)
model
=
DPModel
(
micro_batches
=
args
.
micro_batches
,
norm_clip
=
args
.
l2_norm_bound
,
...
...
@@ -141,7 +143,7 @@ if __name__ == "__main__":
dataset_sink_mode
=
args
.
dataset_sink_mode
)
LOGGER
.
info
(
TAG
,
"============== Starting Testing =============="
)
ckpt_file_name
=
'trained_ckpt_file/checkpoint_lenet-10_
1875
.ckpt'
ckpt_file_name
=
'trained_ckpt_file/checkpoint_lenet-10_
234
.ckpt'
param_dict
=
load_checkpoint
(
ckpt_file_name
)
load_param_into_net
(
network
,
param_dict
)
ds_eval
=
generate_mnist_dataset
(
os
.
path
.
join
(
args
.
data_path
,
'test'
),
batch_size
=
cfg
.
batch_size
)
...
...
example/mnist_demo/lenet5_net.py
浏览文件 @
88ed459c
...
...
@@ -29,7 +29,7 @@ def fc_with_initialize(input_channels, out_channels):
def
weight_variable
():
return
TruncatedNormal
(
0.0
2
)
return
TruncatedNormal
(
0.0
5
)
class
LeNet5
(
nn
.
Cell
):
...
...
mindarmour/diff_privacy/mechanisms/mechanisms.py
浏览文件 @
88ed459c
...
...
@@ -72,24 +72,24 @@ class GaussianRandom(Mechanisms):
Args:
norm_bound(float): Clipping bound for the l2 norm of the gradients.
Default: 1.
5
.
Default: 1.
0
.
initial_noise_multiplier(float): Ratio of the standard deviation of
Gaussian noise divided by the norm_bound, which will be used to
calculate privacy spent. Default:
5.0
.
calculate privacy spent. Default:
1.5
.
Returns:
Tensor, generated noise.
Examples:
>>> shape = (3, 2, 4)
>>> norm_bound = 1.
5
>>> initial_noise_multiplier =
0.1
>>> norm_bound = 1.
0
>>> initial_noise_multiplier =
1.5
>>> net = GaussianRandom(shape, norm_bound, initial_noise_multiplier)
>>> res = net(shape)
>>> print(res)
"""
def
__init__
(
self
,
norm_bound
=
1.
5
,
initial_noise_multiplier
=
5.0
):
def
__init__
(
self
,
norm_bound
=
1.
0
,
initial_noise_multiplier
=
1.5
):
super
(
GaussianRandom
,
self
).
__init__
()
self
.
_norm_bound
=
check_value_positive
(
'norm_bound'
,
norm_bound
)
self
.
_initial_noise_multiplier
=
check_value_positive
(
'initial_noise_multiplier'
,
...
...
mindarmour/diff_privacy/monitor/monitor.py
浏览文件 @
88ed459c
...
...
@@ -70,11 +70,11 @@ class RDPMonitor(Callback):
num_samples (int): The total number of samples in training data sets.
batch_size (int): The number of samples in a batch while training.
initial_noise_multiplier (Union[float, int]): The initial
multiplier of added noise. Default:
0.4
.
multiplier of added noise. Default:
1.5
.
max_eps (Union[float, int, None]): The maximum acceptable epsilon
budget for DP training. Default:
3
.0.
budget for DP training. Default:
10
.0.
target_delta (Union[float, int, None]): Target delta budget for DP
training. Default: 1e-
5
.
training. Default: 1e-
3
.
max_delta (Union[float, int, None]): The maximum acceptable delta
budget for DP training. Max_delta must be less than 1 and
suggested to be less than 1e-3, otherwise overflow would be
...
...
@@ -84,7 +84,7 @@ class RDPMonitor(Callback):
orders (Union[None, list[int, float]]): Finite orders used for
computing rdp, which must be greater than 1.
noise_decay_mode (str): Decay mode of adding noise while training,
which can be 'no_decay', '
time' or 'step'. Default: 'step
'.
which can be 'no_decay', '
Time' or 'Step'. Default: 'Time
'.
noise_decay_rate (Union[float, None]): Decay rate of noise while
training. Default: 6e-4.
per_print_times (int): The interval steps of computing and printing
...
...
@@ -92,7 +92,7 @@ class RDPMonitor(Callback):
Examples:
>>> rdp = PrivacyMonitorFactory.create(policy='rdp',
>>> num_samples=60000, batch_size=
32
)
>>> num_samples=60000, batch_size=
256
)
>>> network = Net()
>>> net_loss = nn.SoftmaxCrossEntropyWithLogits()
>>> net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
...
...
@@ -100,9 +100,9 @@ class RDPMonitor(Callback):
>>> model.train(epochs, ds, callbacks=[rdp], dataset_sink_mode=False)
"""
def
__init__
(
self
,
num_samples
,
batch_size
,
initial_noise_multiplier
=
0.4
,
max_eps
=
3.0
,
target_delta
=
1e-5
,
max_delta
=
None
,
target_eps
=
None
,
orders
=
None
,
noise_decay_mode
=
'
step
'
,
def
__init__
(
self
,
num_samples
,
batch_size
,
initial_noise_multiplier
=
1.5
,
max_eps
=
10.0
,
target_delta
=
1e-3
,
max_delta
=
None
,
target_eps
=
None
,
orders
=
None
,
noise_decay_mode
=
'
Time
'
,
noise_decay_rate
=
6e-4
,
per_print_times
=
50
):
super
(
RDPMonitor
,
self
).
__init__
()
check_int_positive
(
'num_samples'
,
num_samples
)
...
...
@@ -132,8 +132,8 @@ class RDPMonitor(Callback):
msg
=
'orders must be greater than 1'
LOGGER
.
error
(
TAG
,
msg
)
raise
ValueError
(
msg
)
if
noise_decay_mode
not
in
(
'no_decay'
,
'
step'
,
't
ime'
):
msg
=
'Noise decay mode must be in (no_decay, step, time)'
if
noise_decay_mode
not
in
(
'no_decay'
,
'
Step'
,
'T
ime'
):
msg
=
"Noise decay mode must be in ('no_decay', 'Step', 'Time')"
LOGGER
.
error
(
TAG
,
msg
)
raise
ValueError
(
msg
)
if
noise_decay_rate
is
not
None
:
...
...
@@ -256,11 +256,11 @@ class RDPMonitor(Callback):
LOGGER
.
error
(
TAG
,
msg
)
raise
ValueError
(
msg
)
if
self
.
_noise_decay_mode
==
'
t
ime'
:
if
self
.
_noise_decay_mode
==
'
T
ime'
:
noise_step
=
[
self
.
_initial_noise_multiplier
/
(
1
+
self
.
_noise_decay_rate
*
step
)
for
step
in
steps
]
elif
self
.
_noise_decay_mode
==
'
s
tep'
:
elif
self
.
_noise_decay_mode
==
'
S
tep'
:
noise_step
=
[
self
.
_initial_noise_multiplier
*
(
1
-
self
.
_noise_decay_rate
)
**
step
for
step
in
steps
]
self
.
_rdp
+=
sum
(
...
...
mindarmour/diff_privacy/optimizer/optimizer.py
浏览文件 @
88ed459c
...
...
@@ -34,8 +34,8 @@ class DPOptimizerClassFactory:
Examples:
>>> GaussianSGD = DPOptimizerClassFactory(micro_batches=2)
>>> GaussianSGD.set_mechanisms('Gaussian', norm_bound=1.
5, initial_noise_multiplier=5.0
)
>>> net_opt = GaussianSGD.create('
SGD
')(params=network.trainable_params(),
>>> GaussianSGD.set_mechanisms('Gaussian', norm_bound=1.
0, initial_noise_multiplier=1.5
)
>>> net_opt = GaussianSGD.create('
Momentum
')(params=network.trainable_params(),
>>> learning_rate=cfg.lr,
>>> momentum=cfg.momentum)
"""
...
...
mindarmour/diff_privacy/train/model.py
浏览文件 @
88ed459c
...
...
@@ -91,7 +91,7 @@ class DPModel(Model):
>>>
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.
0
1, momentum=0.9)
>>> gaussian_mech = DPOptimizerClassFactory()
>>> gaussian_mech.set_mechanisms('Gaussian',
>>> norm_bound=args.l2_norm_bound,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录