提交 8471da24 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!33 Add value-range check for parameter 'noise_decay_rate' of AdaGaussianRandom Class.

Merge pull request !33 from jxlang910/master
......@@ -19,14 +19,22 @@ network config setting, will be used in train.py
from easydict import EasyDict as edict
mnist_cfg = edict({
'num_classes': 10,
'lr': 0.01,
'momentum': 0.9,
'epoch_size': 10,
'batch_size': 256,
'buffer_size': 1000,
'image_height': 32,
'image_width': 32,
'save_checkpoint_steps': 234,
'keep_checkpoint_max': 10,
'num_classes': 10, # the number of classes of model's output
'lr': 0.01, # the learning rate of model's optimizer
'momentum': 0.9, # the momentum value of model's optimizer
'epoch_size': 10, # training epochs
'batch_size': 256, # batch size for training
'image_height': 32, # the height of training samples
'image_width': 32, # the width of training samples
'save_checkpoint_steps': 234, # the interval steps for saving checkpoint file of the model
'keep_checkpoint_max': 10, # the maximum number of checkpoint files would be saved
'device_target': 'Ascend', # device used
'data_path': './MNIST_unzip', # the path of training and testing data set
'dataset_sink_mode': False, # whether deliver all training data to device one time 
'micro_batches': 32, # the number of small batches split from an original batch
'l2_norm_bound': 1.0, # the clip bound of the gradients of model's training parameters
'initial_noise_multiplier': 1.5, # the initial multiplication coefficient of the noise added to training
# parameters' gradients
'mechanisms': 'AdaGaussian', # the method of adding noise in gradients while training
'optimizer': 'Momentum' # the base optimizer used for Differential privacy training
})
......@@ -15,7 +15,6 @@
python lenet5_dp_model_train.py --data_path /YourDataPath --micro_batches=2
"""
import os
import argparse
import mindspore.nn as nn
from mindspore import context
......@@ -87,21 +86,7 @@ def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1,
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--data_path', type=str, default="./MNIST_unzip",
help='path where the dataset is saved')
parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True')
parser.add_argument('--micro_batches', type=int, default=32,
help='optional, if use differential privacy, need to set micro_batches')
parser.add_argument('--l2_norm_bound', type=float, default=1.0,
help='optional, if use differential privacy, need to set l2_norm_bound')
parser.add_argument('--initial_noise_multiplier', type=float, default=1.5,
help='optional, if use differential privacy, need to set initial_noise_multiplier')
args = parser.parse_args()
context.set_context(mode=context.PYNATIVE_MODE, device_target=args.device_target)
context.set_context(mode=context.PYNATIVE_MODE, device_target=cfg.device_target)
network = LeNet5()
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
......@@ -111,27 +96,41 @@ if __name__ == "__main__":
directory='./trained_ckpt_file/',
config=config_ck)
ds_train = generate_mnist_dataset(os.path.join(args.data_path, "train"),
# get training dataset
ds_train = generate_mnist_dataset(os.path.join(cfg.data_path, "train"),
cfg.batch_size,
cfg.epoch_size)
if args.micro_batches and cfg.batch_size % args.micro_batches != 0:
if cfg.micro_batches and cfg.batch_size % cfg.micro_batches != 0:
raise ValueError("Number of micro_batches should divide evenly batch_size")
gaussian_mech = DPOptimizerClassFactory(args.micro_batches)
gaussian_mech.set_mechanisms('Gaussian',
norm_bound=args.l2_norm_bound,
initial_noise_multiplier=args.initial_noise_multiplier)
net_opt = gaussian_mech.create('Momentum')(params=network.trainable_params(),
learning_rate=cfg.lr,
momentum=cfg.momentum)
# Create a factory class of DP optimizer
gaussian_mech = DPOptimizerClassFactory(cfg.micro_batches)
# Set the method of adding noise in gradients while training. Initial_noise_multiplier is suggested to be greater
# than 1.0, otherwise the privacy budget would be huge, which means that the privacy protection effect is weak.
# mechanisms can be 'Gaussian' or 'AdaGaussian', in which noise would be decayed with 'AdaGaussian' mechanism while
# be constant with 'Gaussian' mechanism.
gaussian_mech.set_mechanisms(cfg.mechanisms,
norm_bound=cfg.l2_norm_bound,
initial_noise_multiplier=cfg.initial_noise_multiplier)
# Wrap the base optimizer for DP training. Momentum optimizer is suggested for LenNet5.
net_opt = gaussian_mech.create(cfg.optimizer)(params=network.trainable_params(),
learning_rate=cfg.lr,
momentum=cfg.momentum)
# Create a monitor for DP training. The function of the monitor is to compute and print the privacy budget(eps
# and delta) while training.
rdp_monitor = PrivacyMonitorFactory.create('rdp',
num_samples=60000,
batch_size=cfg.batch_size,
initial_noise_multiplier=args.initial_noise_multiplier*
args.l2_norm_bound,
per_print_times=10)
model = DPModel(micro_batches=args.micro_batches,
norm_clip=args.l2_norm_bound,
initial_noise_multiplier=cfg.initial_noise_multiplier*
cfg.l2_norm_bound,
per_print_times=50)
# Create the DP model for training.
model = DPModel(micro_batches=cfg.micro_batches,
norm_clip=cfg.l2_norm_bound,
dp_mech=gaussian_mech.mech,
network=network,
loss_fn=net_loss,
......@@ -140,12 +139,12 @@ if __name__ == "__main__":
LOGGER.info(TAG, "============== Starting Training ==============")
model.train(cfg['epoch_size'], ds_train, callbacks=[ckpoint_cb, LossMonitor(), rdp_monitor],
dataset_sink_mode=args.dataset_sink_mode)
dataset_sink_mode=cfg.dataset_sink_mode)
LOGGER.info(TAG, "============== Starting Testing ==============")
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-10_234.ckpt'
param_dict = load_checkpoint(ckpt_file_name)
load_param_into_net(network, param_dict)
ds_eval = generate_mnist_dataset(os.path.join(args.data_path, 'test'), batch_size=cfg.batch_size)
ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), batch_size=cfg.batch_size)
acc = model.eval(ds_eval, dataset_sink_mode=False)
LOGGER.info(TAG, "============== Accuracy: %s ==============", acc)
......@@ -24,6 +24,7 @@ from mindspore.common import dtype as mstype
from mindarmour.utils._check_param import check_param_type
from mindarmour.utils._check_param import check_value_positive
from mindarmour.utils._check_param import check_param_in_range
class MechanismsFactory:
......@@ -37,7 +38,8 @@ class MechanismsFactory:
"""
Args:
policy(str): Noise generated strategy, could be 'Gaussian' or
'AdaGaussian'. Default: 'AdaGaussian'.
'AdaGaussian'. Noise would be decayed with 'AdaGaussian' mechanism while
be constant with 'Gaussian' mechanism. Default: 'AdaGaussian'.
args(Union[float, str]): Parameters used for creating noise
mechanisms.
kwargs(Union[float, str]): Parameters used for creating noise
......@@ -115,7 +117,8 @@ class GaussianRandom(Mechanisms):
class AdaGaussianRandom(Mechanisms):
"""
Adaptive Gaussian noise generated mechanism.
Adaptive Gaussian noise generated mechanism. Noise would be decayed with training. Decay mode could be 'Time'
mode or 'Step' mode.
Args:
norm_bound(float): Clipping bound for the l2 norm of the gradients.
......@@ -123,7 +126,7 @@ class AdaGaussianRandom(Mechanisms):
initial_noise_multiplier(float): Ratio of the standard deviation of
Gaussian noise divided by the norm_bound, which will be used to
calculate privacy spent. Default: 5.0.
alpha(float): Hyperparameter for controlling the noise decay.
noise_decay_rate(float): Hyperparameter for controlling the noise decay.
Default: 6e-4.
decay_policy(str): Noise decay strategy include 'Step' and 'Time'.
Default: 'Time'.
......@@ -135,16 +138,16 @@ class AdaGaussianRandom(Mechanisms):
>>> shape = (3, 2, 4)
>>> norm_bound = 1.0
>>> initial_noise_multiplier = 0.1
>>> alpha = 0.5
>>> noise_decay_rate = 0.5
>>> decay_policy = "Time"
>>> net = AdaGaussianRandom(norm_bound, initial_noise_multiplier,
>>> alpha, decay_policy)
>>> noise_decay_rate, decay_policy)
>>> res = net(shape)
>>> print(res)
"""
def __init__(self, norm_bound=1.5, initial_noise_multiplier=5.0,
alpha=6e-4, decay_policy='Time'):
noise_decay_rate=6e-4, decay_policy='Time'):
super(AdaGaussianRandom, self).__init__()
initial_noise_multiplier = check_value_positive('initial_noise_multiplier',
initial_noise_multiplier)
......@@ -156,8 +159,9 @@ class AdaGaussianRandom(Mechanisms):
norm_bound = check_value_positive('norm_bound', norm_bound)
self._norm_bound = Tensor(np.array(norm_bound, np.float32))
alpha = check_param_type('alpha', alpha, float)
self._alpha = Tensor(np.array(alpha, np.float32))
noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
self._noise_decay_rate = Tensor(np.array(noise_decay_rate, np.float32))
if decay_policy not in ['Time', 'Step']:
raise NameError("The decay_policy must be in ['Time', 'Step'], but "
......@@ -176,12 +180,12 @@ class AdaGaussianRandom(Mechanisms):
if self._decay_policy == 'Time':
temp = self._div(self._initial_noise_multiplier,
self._noise_multiplier)
temp = self._add(temp, self._alpha)
temp = self._add(temp, self._noise_decay_rate)
temp = self._div(self._initial_noise_multiplier, temp)
self._noise_multiplier = Parameter(temp, name='noise_multiplier')
else:
one = Tensor(1, self._dtype)
temp = self._sub(one, self._alpha)
temp = self._sub(one, self._noise_decay_rate)
temp = self._mul(temp, self._noise_multiplier)
self._noise_multiplier = Parameter(temp, name='noise_multiplier')
......
......@@ -20,7 +20,7 @@ from mindspore.train.callback import Callback
from mindarmour.utils.logger import LogUtil
from mindarmour.utils._check_param import check_int_positive, \
check_value_positive
check_value_positive, check_param_in_range, check_param_type
LOGGER = LogUtil.get_instance()
TAG = 'DP monitor'
......@@ -40,7 +40,8 @@ class PrivacyMonitorFactory:
Create a privacy monitor class.
Args:
policy (str): Monitor policy, 'rdp' is supported by now.
policy (str): Monitor policy, 'rdp' is supported by now. RDP means R'enyi differential privacy,
which computed based on R'enyi divergence.
args (Union[int, float, numpy.ndarray, list, str]): Parameters
used for creating a privacy monitor.
kwargs (Union[int, float, numpy.ndarray, list, str]): Keyword
......@@ -70,7 +71,7 @@ class RDPMonitor(Callback):
num_samples (int): The total number of samples in training data sets.
batch_size (int): The number of samples in a batch while training.
initial_noise_multiplier (Union[float, int]): The initial
multiplier of added noise. Default: 1.5.
multiplier of the noise added to training parameters' gradients. Default: 1.5.
max_eps (Union[float, int, None]): The maximum acceptable epsilon
budget for DP training. Default: 10.0.
target_delta (Union[float, int, None]): Target delta budget for DP
......@@ -137,11 +138,8 @@ class RDPMonitor(Callback):
LOGGER.error(TAG, msg)
raise ValueError(msg)
if noise_decay_rate is not None:
check_value_positive('noise_decay_rate', noise_decay_rate)
if noise_decay_rate >= 1:
msg = 'Noise decay rate must be less than 1'
LOGGER.error(TAG, msg)
raise ValueError(msg)
noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
check_int_positive('per_print_times', per_print_times)
self._total_echo_privacy = None
......
......@@ -27,7 +27,7 @@ class DPOptimizerClassFactory:
Factory class of Optimizer.
Args:
micro_batches (int): The number of small batches split from an origianl batch. Default: 2.
micro_batches (int): The number of small batches split from an original batch. Default: 2.
Returns:
Optimizer, Optimizer class
......
......@@ -70,7 +70,7 @@ class DPModel(Model):
This class is overload mindspore.train.model.Model.
Args:
micro_batches (int): The number of small batches split from an origianl batch. Default: 2.
micro_batches (int): The number of small batches split from an original batch. Default: 2.
norm_clip (float): Use to clip the bound, if set 1, will retun the original data. Default: 1.0.
dp_mech (Mechanisms): The object can generate the different type of noise. Default: None.
......
......@@ -45,10 +45,10 @@ def test_ada_gaussian():
shape = (3, 2, 4)
norm_bound = 1.0
initial_noise_multiplier = 0.1
alpha = 0.5
noise_decay_rate = 0.5
decay_policy = "Step"
net = AdaGaussianRandom(norm_bound, initial_noise_multiplier,
alpha, decay_policy)
noise_decay_rate, decay_policy)
res = net(shape)
print(res)
......@@ -58,7 +58,7 @@ def test_factory():
shape = (3, 2, 4)
norm_bound = 1.0
initial_noise_multiplier = 0.1
alpha = 0.5
noise_decay_rate = 0.5
decay_policy = "Step"
noise_mechanism = MechanismsFactory()
noise_construct = noise_mechanism.create('Gaussian',
......@@ -70,7 +70,7 @@ def test_factory():
ada_noise_construct = ada_mechanism.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
alpha,
noise_decay_rate,
decay_policy)
ada_noise = ada_noise_construct(shape)
print('ada noise: ', ada_noise)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册