提交 79c6403d 编写于 作者: Z ZhidanLiu

add new feature: adaptive clipping

上级 ac39d193
......@@ -20,7 +20,7 @@ from easydict import EasyDict as edict
mnist_cfg = edict({
'num_classes': 10, # the number of classes of model's output
'lr': 0.1, # the learning rate of model's optimizer
'lr': 0.01, # the learning rate of model's optimizer
'momentum': 0.9, # the momentum value of model's optimizer
'epoch_size': 10, # training epochs
'batch_size': 256, # batch size for training
......@@ -33,8 +33,13 @@ mnist_cfg = edict({
'dataset_sink_mode': False, # whether deliver all training data to device one time
'micro_batches': 16, # the number of small batches split from an original batch
'norm_clip': 1.0, # the clip bound of the gradients of model's training parameters
'initial_noise_multiplier': 1.5, # the initial multiplication coefficient of the noise added to training
'initial_noise_multiplier': 0.5, # the initial multiplication coefficient of the noise added to training
# parameters' gradients
'mechanisms': 'AdaGaussian', # the method of adding noise in gradients while training
'noise_mechanisms': 'AdaGaussian', # the method of adding noise in gradients while training
'clip_mechanisms': 'Gaussian', # the method of adaptive clipping gradients while training
'clip_decay_policy': 'Linear', # Decay policy of adaptive clipping, decay_policy must be in ['Linear', 'Geometric'].
'clip_learning_rate': 0.001, # Learning rate of update norm clip.
'target_unclipped_quantile': 0.9, # Target quantile of norm clip.
'fraction_stddev': 0.01, # The stddev of Gaussian normal which used in empirical_fraction.
'optimizer': 'Momentum' # the base optimizer used for Differential privacy training
})
......@@ -31,7 +31,8 @@ import mindspore.common.dtype as mstype
from mindarmour.diff_privacy import DPModel
from mindarmour.diff_privacy import PrivacyMonitorFactory
from mindarmour.diff_privacy import MechanismsFactory
from mindarmour.diff_privacy import NoiseMechanismsFactory
from mindarmour.diff_privacy import ClipMechanismsFactory
from mindarmour.utils.logger import LogUtil
from lenet5_net import LeNet5
from lenet5_config import mnist_cfg as cfg
......@@ -87,11 +88,14 @@ def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1,
if __name__ == "__main__":
# This configure can run both in pynative mode and graph mode
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
context.set_context(mode=context.GRAPH_MODE,
device_target=cfg.device_target)
network = LeNet5()
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True,
reduction="mean")
config_ck = CheckpointConfig(
save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
directory='./trained_ckpt_file/',
config=config_ck)
......@@ -102,17 +106,33 @@ if __name__ == "__main__":
cfg.epoch_size)
if cfg.micro_batches and cfg.batch_size % cfg.micro_batches != 0:
raise ValueError("Number of micro_batches should divide evenly batch_size")
# Create a factory class of DP mechanisms, this method is adding noise in gradients while training.
# Initial_noise_multiplier is suggested to be greater than 1.0, otherwise the privacy budget would be huge, which
# means that the privacy protection effect is weak. Mechanisms can be 'Gaussian' or 'AdaGaussian', in which noise
# would be decayed with 'AdaGaussian' mechanism while be constant with 'Gaussian' mechanism.
mech = MechanismsFactory().create(cfg.mechanisms,
norm_bound=cfg.norm_clip,
initial_noise_multiplier=cfg.initial_noise_multiplier)
net_opt = nn.Momentum(params=network.trainable_params(), learning_rate=cfg.lr, momentum=cfg.momentum)
# Create a monitor for DP training. The function of the monitor is to compute and print the privacy budget(eps
# and delta) while training.
raise ValueError(
"Number of micro_batches should divide evenly batch_size")
# Create a factory class of DP noise mechanisms, this method is adding noise
# in gradients while training. Initial_noise_multiplier is suggested to be
# greater than 1.0, otherwise the privacy budget would be huge, which means
# that the privacy protection effect is weak. Mechanisms can be 'Gaussian'
# or 'AdaGaussian', in which noise would be decayed with 'AdaGaussian'
# mechanism while be constant with 'Gaussian' mechanism.
noise_mech = NoiseMechanismsFactory().create(cfg.noise_mechanisms,
norm_bound=cfg.norm_clip,
initial_noise_multiplier=cfg.initial_noise_multiplier)
# Create a factory class of clip mechanisms, this method is to adaptive clip
# gradients while training, decay_policy support 'Linear' and 'Geometric',
# learning_rate is the learning rate to update clip_norm,
# target_unclipped_quantile is the target quantile of norm clip,
# fraction_stddev is the stddev of Gaussian normal which used in
# empirical_fraction, the formula is
# $empirical_fraction + N(0, fraction_stddev)$.
clip_mech = ClipMechanismsFactory().create(cfg.clip_mechanisms,
decay_policy=cfg.clip_decay_policy,
learning_rate=cfg.clip_learning_rate,
target_unclipped_quantile=cfg.target_unclipped_quantile,
fraction_stddev=cfg.fraction_stddev)
net_opt = nn.Momentum(params=network.trainable_params(),
learning_rate=cfg.lr, momentum=cfg.momentum)
# Create a monitor for DP training. The function of the monitor is to
# compute and print the privacy budget(eps and delta) while training.
rdp_monitor = PrivacyMonitorFactory.create('rdp',
num_samples=60000,
batch_size=cfg.batch_size,
......@@ -121,20 +141,23 @@ if __name__ == "__main__":
# Create the DP model for training.
model = DPModel(micro_batches=cfg.micro_batches,
norm_clip=cfg.norm_clip,
mech=mech,
noise_mech=noise_mech,
clip_mech=clip_mech,
network=network,
loss_fn=net_loss,
optimizer=net_opt,
metrics={"Accuracy": Accuracy()})
LOGGER.info(TAG, "============== Starting Training ==============")
model.train(cfg['epoch_size'], ds_train, callbacks=[ckpoint_cb, LossMonitor(), rdp_monitor],
model.train(cfg['epoch_size'], ds_train,
callbacks=[ckpoint_cb, LossMonitor(), rdp_monitor],
dataset_sink_mode=cfg.dataset_sink_mode)
LOGGER.info(TAG, "============== Starting Testing ==============")
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-10_234.ckpt'
param_dict = load_checkpoint(ckpt_file_name)
load_param_into_net(network, param_dict)
ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), batch_size=cfg.batch_size)
ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'),
batch_size=cfg.batch_size)
acc = model.eval(ds_eval, dataset_sink_mode=False)
LOGGER.info(TAG, "============== Accuracy: %s ==============", acc)
"""
This module provide Differential Privacy feature to protect user privacy.
"""
from .mechanisms.mechanisms import GaussianRandom
from .mechanisms.mechanisms import NoiseGaussianRandom
from .mechanisms.mechanisms import AdaGaussianRandom
from .mechanisms.mechanisms import MechanismsFactory
from .mechanisms.mechanisms import AdaClippingWithGaussianRandom
from .mechanisms.mechanisms import NoiseMechanismsFactory
from .mechanisms.mechanisms import ClipMechanismsFactory
from .monitor.monitor import PrivacyMonitorFactory
from .optimizer.optimizer import DPOptimizerClassFactory
from .train.model import DPModel
__all__ = ['GaussianRandom',
__all__ = ['NoiseGaussianRandom',
'AdaGaussianRandom',
'MechanismsFactory',
'AdaClippingWithGaussianRandom',
'NoiseMechanismsFactory',
'ClipMechanismsFactory',
'PrivacyMonitorFactory',
'DPOptimizerClassFactory',
'DPModel']
......@@ -28,11 +28,54 @@ from mindarmour.utils._check_param import check_param_in_range
from mindarmour.utils.logger import LogUtil
LOGGER = LogUtil.get_instance()
TAG = 'Defense'
TAG = 'NoiseMechanism'
class MechanismsFactory:
""" Factory class of mechanisms"""
class ClipMechanismsFactory:
""" Factory class of clip mechanisms"""
def __init__(self):
pass
@staticmethod
def create(mech_name, *args, **kwargs):
"""
Args:
mech_name(str): Clip noise generated strategy, support 'Gaussian' now.
args(Union[float, str]): Parameters used for creating clip mechanisms.
kwargs(Union[float, str]): Parameters used for creating clip
mechanisms.
Raises:
NameError: `mech_name` must be in ['Gaussian'].
Returns:
Mechanisms, class of noise generated Mechanism.
Examples:
>>> decay_policy = 'Linear'
>>> beta = Tensor(0.5, mstype.float32)
>>> norm_clip = Tensor(1.0, mstype.float32)
>>> beta_stddev = 0.1
>>> learning_rate = 0.1
>>> target_unclipped_quantile = 0.3
>>> clip_mechanism = ClipMechanismsFactory()
>>> ada_clip = clip_mechanism.create('Gaussian',
>>> decay_policy=decay_policy,
>>> learning_rate=learning_rate,
>>> target_unclipped_quantile=target_unclipped_quantile,
>>> fraction_stddev=beta_stddev)
>>> next_norm_clip = ada_clip(beta, norm_clip)
"""
if mech_name == 'Gaussian':
return AdaClippingWithGaussianRandom(*args, **kwargs)
raise NameError("The {} is not implement, please choose "
"['Gaussian']".format(mech_name))
class NoiseMechanismsFactory:
""" Factory class of noise mechanisms"""
def __init__(self):
pass
......@@ -56,42 +99,38 @@ class MechanismsFactory:
Mechanisms, class of noise generated Mechanism.
Examples:
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal')
>>> self.bn = nn.BatchNorm2d(64)
>>> self.relu = nn.ReLU()
>>> self.flatten = nn.Flatten()
>>> self.fc = nn.Dense(64*224*224, 12) # padding=0
>>>
>>> def construct(self, x):
>>> x = self.conv(x)
>>> x = self.bn(x)
>>> x = self.relu(x)
>>> x = self.flatten(x)
>>> out = self.fc(x)
>>> return out
>>> norm_clip = 1.0
>>> initial_noise_multiplier = 1.5
>>> net = Net()
>>> initial_noise_multiplier = 0.01
>>> network = LeNet5()
>>> batch_size = 32
>>> batches = 128
>>> epochs = 1
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> net_opt = Momentum(params=net.trainable_params(), learning_rate=0.01, momentum=0.9)
>>> mech = MechanismsFactory().create('Gaussian',
>>> norm_bound=norm_clip,
>>> initial_noise_multiplier=initial_noise_multiplier)
>>> noise_mech = NoiseMechanismsFactory().create('Gaussian',
>>> norm_bound=norm_clip,
>>> initial_noise_multiplier=initial_noise_multiplier)
>>> clip_mech = ClipMechanismsFactory().create('Gaussian',
>>> decay_policy='Linear',
>>> learning_rate=0.01,
>>> target_unclipped_quantile=0.9,
>>> fraction_stddev=0.01)
>>> net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1,
>>> momentum=0.9)
>>> model = DPModel(micro_batches=2,
>>> norm_clip=1.0,
>>> mech=mech,
>>> network=net,
>>> clip_mech=clip_mech,
>>> norm_clip=norm_clip,
>>> noise_mech=noise_mech,
>>> network=network,
>>> loss_fn=loss,
>>> optimizer=net_opt,
>>> metrics=None)
>>> dataset = get_dataset()
>>> model.train(2, dataset)
>>> ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches),
>>> ['data', 'label'])
>>> ms_ds.set_dataset_size(batch_size * batches)
>>> model.train(epochs, ms_ds, dataset_sink_mode=False)
"""
if policy == 'Gaussian':
return GaussianRandom(*args, **kwargs)
return NoiseGaussianRandom(*args, **kwargs)
if policy == 'AdaGaussian':
return AdaGaussianRandom(*args, **kwargs)
raise NameError("The {} is not implement, please choose "
......@@ -110,7 +149,7 @@ class Mechanisms(Cell):
"""
class GaussianRandom(Mechanisms):
class NoiseGaussianRandom(Mechanisms):
"""
Gaussian noise generated mechanism.
......@@ -133,18 +172,21 @@ class GaussianRandom(Mechanisms):
>>> gradients = Tensor([0.2, 0.9], mstype.float32)
>>> norm_bound = 0.5
>>> initial_noise_multiplier = 1.5
>>> net = GaussianRandom(norm_bound, initial_noise_multiplier)
>>> net = NoiseGaussianRandom(norm_bound, initial_noise_multiplier)
>>> res = net(gradients)
>>> print(res)
"""
def __init__(self, norm_bound=0.5, initial_noise_multiplier=1.5, seed=0, policy=None):
super(GaussianRandom, self).__init__()
def __init__(self, norm_bound=0.5, initial_noise_multiplier=1.5, seed=0,
policy=None):
super(NoiseGaussianRandom, self).__init__()
self._norm_bound = check_value_positive('norm_bound', norm_bound)
self._norm_bound = Tensor(norm_bound, mstype.float32)
self._initial_noise_multiplier = check_value_positive('initial_noise_multiplier',
initial_noise_multiplier)
self._initial_noise_multiplier = Tensor(initial_noise_multiplier, mstype.float32)
self._initial_noise_multiplier = check_value_positive(
'initial_noise_multiplier',
initial_noise_multiplier)
self._initial_noise_multiplier = Tensor(initial_noise_multiplier,
mstype.float32)
self._mean = Tensor(0, mstype.float32)
self._normal = P.Normal(seed=seed)
self._decay_policy = policy
......@@ -201,17 +243,20 @@ class AdaGaussianRandom(Mechanisms):
noise_decay_rate=6e-4, decay_policy='Time', seed=0):
super(AdaGaussianRandom, self).__init__()
norm_bound = check_value_positive('norm_bound', norm_bound)
initial_noise_multiplier = check_value_positive('initial_noise_multiplier',
initial_noise_multiplier)
initial_noise_multiplier = check_value_positive(
'initial_noise_multiplier',
initial_noise_multiplier)
self._norm_bound = Tensor(norm_bound, mstype.float32)
initial_noise_multiplier = Tensor(initial_noise_multiplier, mstype.float32)
initial_noise_multiplier = Tensor(initial_noise_multiplier,
mstype.float32)
self._initial_noise_multiplier = Parameter(initial_noise_multiplier,
name='initial_noise_multiplier')
self._noise_multiplier = Parameter(initial_noise_multiplier,
name='noise_multiplier')
self._mean = Tensor(0, mstype.float32)
noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
noise_decay_rate = check_param_type('noise_decay_rate',
noise_decay_rate, float)
check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
self._noise_decay_rate = Tensor(noise_decay_rate, mstype.float32)
if decay_policy not in ['Time', 'Step', 'Exp']:
......@@ -232,7 +277,9 @@ class AdaGaussianRandom(Mechanisms):
Tensor, generated noise with shape like given gradients.
"""
shape = P.Shape()(gradients)
noise = self._normal(shape, self._mean, self._mul(self._noise_multiplier, self._norm_bound))
noise = self._normal(shape, self._mean,
self._mul(self._noise_multiplier,
self._norm_bound))
return noise
......@@ -241,10 +288,14 @@ class _MechanismsParamsUpdater(Cell):
Update mechanisms parameters, the parameters will refresh in train period.
Args:
policy(str): Pass in by the mechanisms class, mechanisms parameters update policy.
decay_rate(Tensor): Pass in by the mechanisms class, hyper parameter for controlling the decay size.
cur_noise_multiplier(Parameter): Pass in by the mechanisms class, current params value in this time.
init_noise_multiplier(Parameter):Pass in by the mechanisms class, initial params value to be updated.
policy(str): Pass in by the mechanisms class, mechanisms parameters
update policy.
decay_rate(Tensor): Pass in by the mechanisms class, hyper parameter for
controlling the decay size.
cur_noise_multiplier(Parameter): Pass in by the mechanisms class,
current params value in this time.
init_noise_multiplier(Parameter):Pass in by the mechanisms class,
initial params value to be updated.
Returns:
Tuple, next params value.
......@@ -281,5 +332,100 @@ class _MechanismsParamsUpdater(Cell):
next_noise_multiplier = self._assign(self._cur_noise_multiplier,
self._mul(temp, self._cur_noise_multiplier))
else:
next_noise_multiplier = self._assign(self._cur_noise_multiplier, self._div(self._one, self._exp(self._one)))
next_noise_multiplier = self._assign(self._cur_noise_multiplier,
self._div(self._one, self._exp(self._one)))
return next_noise_multiplier
class AdaClippingWithGaussianRandom(Cell):
"""
Adaptive clipping. If `decay_policy` is 'Linear', the update formula is
$ norm_clip = norm_clip - learning_rate*(beta-target_unclipped_quantile)$.
`decay_policy` is 'Geometric', the update formula is
$ norm_clip = norm_clip*exp(-learning_rate*(empirical_fraction-target_unclipped_quantile))$.
where beta is the empirical fraction of samples with the value at most
`target_unclipped_quantile`.
Args:
decay_policy(str): Decay policy of adaptive clipping, decay_policy must
be in ['Linear', 'Geometric']. Default: Linear.
learning_rate(float): Learning rate of update norm clip. Default: 0.01.
target_unclipped_quantile(float): Target quantile of norm clip. Default: 0.9.
fraction_stddev(float): The stddev of Gaussian normal which used in
empirical_fraction, the formula is $empirical_fraction + N(0, fraction_stddev)$.
seed(int): Original random seed, if seed=0 random normal will use secure
random number. IF seed!=0 random normal will generate values using
given seed. Default: 0.
Returns:
Tensor, undated norm clip .
Examples:
>>> decay_policy = 'Linear'
>>> beta = Tensor(0.5, mstype.float32)
>>> norm_clip = Tensor(1.0, mstype.float32)
>>> beta_stddev = 0.01
>>> learning_rate = 0.001
>>> target_unclipped_quantile = 0.9
>>> ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
>>> learning_rate=learning_rate,
>>> target_unclipped_quantile=target_unclipped_quantile,
>>> fraction_stddev=beta_stddev)
>>> next_norm_clip = ada_clip(beta, norm_clip)
"""
def __init__(self, decay_policy='Linear', learning_rate=0.001,
target_unclipped_quantile=0.9, fraction_stddev=0.01, seed=0):
super(AdaClippingWithGaussianRandom, self).__init__()
if decay_policy not in ['Linear', 'Geometric']:
msg = "decay policy of adaptive clip must be in ['Linear', 'Geometric'], \
but got: {}".format(decay_policy)
LOGGER.error(TAG, msg)
raise ValueError(msg)
self._decay_policy = decay_policy
learning_rate = check_param_type('learning_rate', learning_rate, float)
learning_rate = check_value_positive('learning_rate', learning_rate)
self._learning_rate = Tensor(learning_rate, mstype.float32)
fraction_stddev = check_param_type('fraction_stddev', fraction_stddev, float)
self._fraction_stddev = Tensor(fraction_stddev, mstype.float32)
target_unclipped_quantile = check_param_type('target_unclipped_quantile',
target_unclipped_quantile,
float)
self._target_unclipped_quantile = Tensor(target_unclipped_quantile,
mstype.float32)
self._zero = Tensor(0, mstype.float32)
self._add = P.TensorAdd()
self._sub = P.Sub()
self._mul = P.Mul()
self._exp = P.Exp()
self._normal = P.Normal(seed=seed)
def construct(self, empirical_fraction, norm_clip):
"""
Update value of norm_clip.
Args:
empirical_fraction(Tensor): empirical fraction of samples with the
value at most `target_unclipped_quantile`.
norm_clip(Tensor): Clipping bound for the l2 norm of the gradients.
Returns:
Tensor, generated noise with shape like given gradients.
"""
fraction_noise = self._normal((1,), self._zero, self._fraction_stddev)
empirical_fraction = self._add(empirical_fraction, fraction_noise)
if self._decay_policy == 'Linear':
grad_clip = self._sub(empirical_fraction,
self._target_unclipped_quantile)
next_norm_clip = self._sub(norm_clip,
self._mul(self._learning_rate, grad_clip))
# decay_policy == 'Geometric'
else:
grad_clip = self._sub(empirical_fraction,
self._target_unclipped_quantile)
grad_clip = self._exp(self._mul(-self._learning_rate, grad_clip))
next_norm_clip = self._mul(norm_clip, grad_clip)
return next_norm_clip
......@@ -22,7 +22,7 @@ from mindspore.ops import functional as F
from mindspore.common import dtype as mstype
from mindarmour.utils.logger import LogUtil
from mindarmour.diff_privacy import MechanismsFactory
from mindarmour.diff_privacy import NoiseMechanismsFactory
from mindarmour.diff_privacy.mechanisms.mechanisms import _MechanismsParamsUpdater
from mindarmour.utils._check_param import check_int_positive
......@@ -70,7 +70,7 @@ class DPOptimizerClassFactory:
"""
def __init__(self, micro_batches=2):
self._mech_factory = MechanismsFactory()
self._mech_factory = NoiseMechanismsFactory()
self.mech = None
self._micro_batches = check_int_positive('micro_batches', micro_batches)
......
......@@ -19,9 +19,11 @@ import pytest
from mindspore import context
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindarmour.diff_privacy import GaussianRandom
from mindarmour.diff_privacy import NoiseGaussianRandom
from mindarmour.diff_privacy import AdaGaussianRandom
from mindarmour.diff_privacy import MechanismsFactory
from mindarmour.diff_privacy import AdaClippingWithGaussianRandom
from mindarmour.diff_privacy import NoiseMechanismsFactory
from mindarmour.diff_privacy import ClipMechanismsFactory
@pytest.mark.level0
......@@ -33,7 +35,7 @@ def test_graph_gaussian():
grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
net = GaussianRandom(norm_bound, initial_noise_multiplier)
net = NoiseGaussianRandom(norm_bound, initial_noise_multiplier)
res = net(grad)
print(res)
......@@ -47,7 +49,7 @@ def test_pynative_gaussian():
grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
norm_bound = 1.0
initial_noise_multiplier = 0.1
net = GaussianRandom(norm_bound, initial_noise_multiplier)
net = NoiseGaussianRandom(norm_bound, initial_noise_multiplier)
res = net(grad)
print(res)
......@@ -80,13 +82,13 @@ def test_graph_factory():
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Step'
noise_mechanism = MechanismsFactory()
noise_mechanism = NoiseMechanismsFactory()
noise_construct = noise_mechanism.create('Gaussian',
norm_bound,
initial_noise_multiplier)
noise = noise_construct(grad)
print('Gaussian noise: ', noise)
ada_mechanism = MechanismsFactory()
ada_mechanism = NoiseMechanismsFactory()
ada_noise_construct = ada_mechanism.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
......@@ -124,13 +126,13 @@ def test_pynative_factory():
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Step'
noise_mechanism = MechanismsFactory()
noise_mechanism = NoiseMechanismsFactory()
noise_construct = noise_mechanism.create('Gaussian',
norm_bound,
initial_noise_multiplier)
noise = noise_construct(grad)
print('Gaussian noise: ', noise)
ada_mechanism = MechanismsFactory()
ada_mechanism = NoiseMechanismsFactory()
ada_noise_construct = ada_mechanism.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
......@@ -151,7 +153,7 @@ def test_pynative_exponential():
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Exp'
ada_mechanism = MechanismsFactory()
ada_mechanism = NoiseMechanismsFactory()
ada_noise_construct = ada_mechanism.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
......@@ -172,7 +174,7 @@ def test_graph_exponential():
initial_noise_multiplier = 0.1
alpha = 0.5
decay_policy = 'Exp'
ada_mechanism = MechanismsFactory()
ada_mechanism = NoiseMechanismsFactory()
ada_noise_construct = ada_mechanism.create('AdaGaussian',
norm_bound,
initial_noise_multiplier,
......@@ -180,3 +182,107 @@ def test_graph_exponential():
decay_policy=decay_policy)
ada_noise = ada_noise_construct(grad)
print('ada noise: ', ada_noise)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_ada_clip_gaussian_random_pynative():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
decay_policy = 'Linear'
beta = Tensor(0.5, mstype.float32)
norm_clip = Tensor(1.0, mstype.float32)
beta_stddev = 0.1
learning_rate = 0.1
target_unclipped_quantile = 0.3
ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
learning_rate=learning_rate,
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev,
seed=1)
next_norm_clip = ada_clip(beta, norm_clip)
print('Liner next norm clip:', next_norm_clip)
decay_policy = 'Geometric'
ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
learning_rate=learning_rate,
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev,
seed=1)
next_norm_clip = ada_clip(beta, norm_clip)
print('Geometric next norm clip:', next_norm_clip)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_ada_clip_gaussian_random_graph():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
decay_policy = 'Linear'
beta = Tensor(0.5, mstype.float32)
norm_clip = Tensor(1.0, mstype.float32)
beta_stddev = 0.1
learning_rate = 0.1
target_unclipped_quantile = 0.3
ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
learning_rate=learning_rate,
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev,
seed=1)
next_norm_clip = ada_clip(beta, norm_clip)
print('Liner next norm clip:', next_norm_clip)
decay_policy = 'Geometric'
ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
learning_rate=learning_rate,
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev,
seed=1)
next_norm_clip = ada_clip(beta, norm_clip)
print('Geometric next norm clip:', next_norm_clip)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_pynative_clip_mech_factory():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
decay_policy = 'Linear'
beta = Tensor(0.5, mstype.float32)
norm_clip = Tensor(1.0, mstype.float32)
beta_stddev = 0.1
learning_rate = 0.1
target_unclipped_quantile = 0.3
clip_mechanism = ClipMechanismsFactory()
ada_clip = clip_mechanism.create('Gaussian',
decay_policy=decay_policy,
learning_rate=learning_rate,
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev)
next_norm_clip = ada_clip(beta, norm_clip)
print('next_norm_clip: ', next_norm_clip)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_graph_clip_mech_factory():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
decay_policy = 'Linear'
beta = Tensor(0.5, mstype.float32)
norm_clip = Tensor(1.0, mstype.float32)
beta_stddev = 0.1
learning_rate = 0.1
target_unclipped_quantile = 0.3
clip_mechanism = ClipMechanismsFactory()
ada_clip = clip_mechanism.create('Gaussian',
decay_policy=decay_policy,
learning_rate=learning_rate,
target_unclipped_quantile=target_unclipped_quantile,
fraction_stddev=beta_stddev)
next_norm_clip = ada_clip(beta, norm_clip)
print('next_norm_clip: ', next_norm_clip)
......@@ -22,7 +22,8 @@ from mindspore import context
import mindspore.dataset as ds
from mindarmour.diff_privacy import DPModel
from mindarmour.diff_privacy import MechanismsFactory
from mindarmour.diff_privacy import NoiseMechanismsFactory
from mindarmour.diff_privacy import ClipMechanismsFactory
from mindarmour.diff_privacy import DPOptimizerClassFactory
from test_network import LeNet5
......@@ -30,10 +31,12 @@ from test_network import LeNet5
def dataset_generator(batch_size, batches):
"""mock training data."""
data = np.random.random((batches * batch_size, 1, 32, 32)).astype(np.float32)
label = np.random.randint(0, 10, batches * batch_size).astype(np.int32)
data = np.random.random((batches*batch_size, 1, 32, 32)).astype(
np.float32)
label = np.random.randint(0, 10, batches*batch_size).astype(np.int32)
for i in range(batches):
yield data[i * batch_size:(i + 1) * batch_size], label[i * batch_size:(i + 1) * batch_size]
yield data[i*batch_size:(i + 1)*batch_size],\
label[i*batch_size:(i + 1)*batch_size]
@pytest.mark.level0
......@@ -55,16 +58,24 @@ def test_dp_model_with_pynative_mode():
factory_opt.set_mechanisms('Gaussian',
norm_bound=norm_clip,
initial_noise_multiplier=initial_noise_multiplier)
net_opt = factory_opt.create('Momentum')(network.trainable_params(), learning_rate=0.1, momentum=0.9)
net_opt = factory_opt.create('Momentum')(network.trainable_params(),
learning_rate=0.1, momentum=0.9)
clip_mech = ClipMechanismsFactory().create('Gaussian',
decay_policy='Linear',
learning_rate=0.01,
target_unclipped_quantile=0.9,
fraction_stddev=0.01)
model = DPModel(micro_batches=micro_batches,
norm_clip=norm_clip,
mech=None,
clip_mech=clip_mech,
noise_mech=None,
network=network,
loss_fn=loss,
optimizer=net_opt,
metrics=None)
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), ['data', 'label'])
ms_ds.set_dataset_size(batch_size * batches)
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches),
['data', 'label'])
ms_ds.set_dataset_size(batch_size*batches)
model.train(epochs, ms_ds, dataset_sink_mode=False)
......@@ -82,19 +93,27 @@ def test_dp_model_with_graph_mode():
batches = 128
epochs = 1
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
mech = MechanismsFactory().create('Gaussian',
norm_bound=norm_clip,
initial_noise_multiplier=initial_noise_multiplier)
net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9)
noise_mech = NoiseMechanismsFactory().create('Gaussian',
norm_bound=norm_clip,
initial_noise_multiplier=initial_noise_multiplier)
clip_mech = ClipMechanismsFactory().create('Gaussian',
decay_policy='Linear',
learning_rate=0.01,
target_unclipped_quantile=0.9,
fraction_stddev=0.01)
net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1,
momentum=0.9)
model = DPModel(micro_batches=2,
clip_mech=clip_mech,
norm_clip=norm_clip,
mech=mech,
noise_mech=noise_mech,
network=network,
loss_fn=loss,
optimizer=net_opt,
metrics=None)
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), ['data', 'label'])
ms_ds.set_dataset_size(batch_size * batches)
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches),
['data', 'label'])
ms_ds.set_dataset_size(batch_size*batches)
model.train(epochs, ms_ds, dataset_sink_mode=False)
......@@ -112,17 +131,25 @@ def test_dp_model_with_graph_mode_ada_gaussian():
batches = 128
epochs = 1
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
mech = MechanismsFactory().create('AdaGaussian',
norm_bound=norm_clip,
initial_noise_multiplier=initial_noise_multiplier)
net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9)
noise_mech = NoiseMechanismsFactory().create('AdaGaussian',
norm_bound=norm_clip,
initial_noise_multiplier=initial_noise_multiplier)
clip_mech = ClipMechanismsFactory().create('Gaussian',
decay_policy='Linear',
learning_rate=0.01,
target_unclipped_quantile=0.9,
fraction_stddev=0.01)
net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1,
momentum=0.9)
model = DPModel(micro_batches=2,
clip_mech=clip_mech,
norm_clip=norm_clip,
mech=mech,
noise_mech=noise_mech,
network=network,
loss_fn=loss,
optimizer=net_opt,
metrics=None)
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), ['data', 'label'])
ms_ds.set_dataset_size(batch_size * batches)
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches),
['data', 'label'])
ms_ds.set_dataset_size(batch_size*batches)
model.train(epochs, ms_ds, dataset_sink_mode=False)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册