Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindarmour
提交
151e10e8
M
mindarmour
项目概览
MindSpore
/
mindarmour
通知
4
Star
2
Fork
3
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindarmour
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
151e10e8
编写于
5月 13, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
5月 13, 2020
浏览文件
操作
浏览文件
下载
差异文件
!17 Add MNIST-examples which can be running on CPU device.
Merge pull request !17 from jxlang910/master
上级
2c0b17f5
243633ac
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
1138 addition
and
40 deletion
+1138
-40
example/mnist_demo/mnist_attack_cw.py
example/mnist_demo/mnist_attack_cw.py
+76
-2
example/mnist_demo/mnist_attack_deepfool.py
example/mnist_demo/mnist_attack_deepfool.py
+77
-3
example/mnist_demo/mnist_attack_fgsm.py
example/mnist_demo/mnist_attack_fgsm.py
+77
-3
example/mnist_demo/mnist_attack_genetic.py
example/mnist_demo/mnist_attack_genetic.py
+83
-2
example/mnist_demo/mnist_attack_hsja.py
example/mnist_demo/mnist_attack_hsja.py
+79
-5
example/mnist_demo/mnist_attack_jsma.py
example/mnist_demo/mnist_attack_jsma.py
+82
-2
example/mnist_demo/mnist_attack_lbfgs.py
example/mnist_demo/mnist_attack_lbfgs.py
+89
-3
example/mnist_demo/mnist_attack_mdi2fgsm.py
example/mnist_demo/mnist_attack_mdi2fgsm.py
+75
-3
example/mnist_demo/mnist_attack_nes.py
example/mnist_demo/mnist_attack_nes.py
+85
-3
example/mnist_demo/mnist_attack_pgd.py
example/mnist_demo/mnist_attack_pgd.py
+77
-3
example/mnist_demo/mnist_attack_pointwise.py
example/mnist_demo/mnist_attack_pointwise.py
+80
-3
example/mnist_demo/mnist_attack_pso.py
example/mnist_demo/mnist_attack_pso.py
+76
-2
example/mnist_demo/mnist_attack_salt_and_pepper.py
example/mnist_demo/mnist_attack_salt_and_pepper.py
+84
-3
example/mnist_demo/mnist_defense_nad.py
example/mnist_demo/mnist_defense_nad.py
+96
-2
mindarmour/defenses/natural_adversarial_defense.py
mindarmour/defenses/natural_adversarial_defense.py
+2
-1
未找到文件。
example/mnist_demo/mnist_attack_cw.py
浏览文件 @
151e10e8
...
@@ -27,12 +27,12 @@ from mindarmour.attacks.carlini_wagner import CarliniWagnerL2Attack
...
@@ -27,12 +27,12 @@ from mindarmour.attacks.carlini_wagner import CarliniWagnerL2Attack
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'CW_Test'
TAG
=
'CW_Test'
...
@@ -45,6 +45,80 @@ def test_carlini_wagner_attack():
...
@@ -45,6 +45,80 @@ def test_carlini_wagner_attack():
"""
"""
CW-Attack test
CW-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
# prediction accuracy before attack
model
=
Model
(
net
)
batch_num
=
3
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
Tensor
(
images
)).
asnumpy
(),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %s"
,
accuracy
)
# attacking
num_classes
=
10
attack
=
CarliniWagnerL2Attack
(
net
,
num_classes
,
targeted
=
False
)
start_time
=
time
.
clock
()
adv_data
=
attack
.
batch_generate
(
np
.
concatenate
(
test_images
),
np
.
concatenate
(
test_labels
),
batch_size
=
32
)
stop_time
=
time
.
clock
()
pred_logits_adv
=
model
.
predict
(
Tensor
(
adv_data
)).
asnumpy
()
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
pred_labels_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_labels_adv
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %s"
,
accuracy_adv
)
test_labels
=
np
.
eye
(
10
)[
np
.
concatenate
(
test_labels
)]
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
).
transpose
(
0
,
2
,
3
,
1
),
test_labels
,
adv_data
.
transpose
(
0
,
2
,
3
,
1
),
pred_logits_adv
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
LOGGER
.
info
(
TAG
,
'The average structural similarity between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_ssim
())
LOGGER
.
info
(
TAG
,
'The average costing time is %s'
,
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
def
test_carlini_wagner_attack_cpu
():
"""
CW-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -114,4 +188,4 @@ def test_carlini_wagner_attack():
...
@@ -114,4 +188,4 @@ def test_carlini_wagner_attack():
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_carlini_wagner_attack
()
test_carlini_wagner_attack
_cpu
()
example/mnist_demo/mnist_attack_deepfool.py
浏览文件 @
151e10e8
...
@@ -27,13 +27,12 @@ from mindarmour.attacks.deep_fool import DeepFool
...
@@ -27,13 +27,12 @@ from mindarmour.attacks.deep_fool import DeepFool
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'DeepFool_Test'
TAG
=
'DeepFool_Test'
...
@@ -46,6 +45,81 @@ def test_deepfool_attack():
...
@@ -46,6 +45,81 @@ def test_deepfool_attack():
"""
"""
DeepFool-Attack test
DeepFool-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
# prediction accuracy before attack
model
=
Model
(
net
)
batch_num
=
3
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
Tensor
(
images
)).
asnumpy
(),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %s"
,
accuracy
)
# attacking
classes
=
10
attack
=
DeepFool
(
net
,
classes
,
norm_level
=
2
,
bounds
=
(
0.0
,
1.0
))
start_time
=
time
.
clock
()
adv_data
=
attack
.
batch_generate
(
np
.
concatenate
(
test_images
),
np
.
concatenate
(
test_labels
),
batch_size
=
32
)
stop_time
=
time
.
clock
()
pred_logits_adv
=
model
.
predict
(
Tensor
(
adv_data
)).
asnumpy
()
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
pred_labels_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_labels_adv
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %s"
,
accuracy_adv
)
test_labels
=
np
.
eye
(
10
)[
np
.
concatenate
(
test_labels
)]
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
).
transpose
(
0
,
2
,
3
,
1
),
test_labels
,
adv_data
.
transpose
(
0
,
2
,
3
,
1
),
pred_logits_adv
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
LOGGER
.
info
(
TAG
,
'The average structural similarity between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_ssim
())
LOGGER
.
info
(
TAG
,
'The average costing time is %s'
,
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
def
test_deepfool_attack_cpu
():
"""
DeepFool-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -116,4 +190,4 @@ def test_deepfool_attack():
...
@@ -116,4 +190,4 @@ def test_deepfool_attack():
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_deepfool_attack
()
test_deepfool_attack
_cpu
()
example/mnist_demo/mnist_attack_fgsm.py
浏览文件 @
151e10e8
...
@@ -20,6 +20,7 @@ from mindspore import Model
...
@@ -20,6 +20,7 @@ from mindspore import Model
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore
import
context
from
mindspore
import
context
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.nn
import
SoftmaxCrossEntropyWithLogits
from
scipy.special
import
softmax
from
scipy.special
import
softmax
from
lenet5_net
import
LeNet5
from
lenet5_net
import
LeNet5
...
@@ -27,13 +28,12 @@ from mindarmour.attacks.gradient_method import FastGradientSignMethod
...
@@ -27,13 +28,12 @@ from mindarmour.attacks.gradient_method import FastGradientSignMethod
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'FGSM_Test'
TAG
=
'FGSM_Test'
...
@@ -46,6 +46,7 @@ def test_fast_gradient_sign_method():
...
@@ -46,6 +46,7 @@ def test_fast_gradient_sign_method():
"""
"""
FGSM-Attack test
FGSM-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -113,5 +114,78 @@ def test_fast_gradient_sign_method():
...
@@ -113,5 +114,78 @@ def test_fast_gradient_sign_method():
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
def
test_fast_gradient_sign_method_cpu
():
"""
FGSM-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
)
# prediction accuracy before attack
model
=
Model
(
net
)
batch_num
=
3
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
Tensor
(
images
)).
asnumpy
(),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %s"
,
accuracy
)
# attacking
loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
attack
=
FastGradientSignMethod
(
net
,
eps
=
0.3
,
loss_fn
=
loss
)
start_time
=
time
.
clock
()
adv_data
=
attack
.
batch_generate
(
np
.
concatenate
(
test_images
),
true_labels
,
batch_size
=
32
)
stop_time
=
time
.
clock
()
np
.
save
(
'./adv_data'
,
adv_data
)
pred_logits_adv
=
model
.
predict
(
Tensor
(
adv_data
)).
asnumpy
()
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
pred_labels_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_labels_adv
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %s"
,
accuracy_adv
)
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
).
transpose
(
0
,
2
,
3
,
1
),
np
.
eye
(
10
)[
true_labels
],
adv_data
.
transpose
(
0
,
2
,
3
,
1
),
pred_logits_adv
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
LOGGER
.
info
(
TAG
,
'The average structural similarity between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_ssim
())
LOGGER
.
info
(
TAG
,
'The average costing time is %s'
,
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_fast_gradient_sign_method
()
test_fast_gradient_sign_method
_cpu
()
example/mnist_demo/mnist_attack_genetic.py
浏览文件 @
151e10e8
...
@@ -27,12 +27,12 @@ from mindarmour.attacks.black.genetic_attack import GeneticAttack
...
@@ -27,12 +27,12 @@ from mindarmour.attacks.black.genetic_attack import GeneticAttack
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'Genetic_Attack'
TAG
=
'Genetic_Attack'
...
@@ -58,6 +58,87 @@ def test_genetic_attack_on_mnist():
...
@@ -58,6 +58,87 @@ def test_genetic_attack_on_mnist():
"""
"""
Genetic-Attack test
Genetic-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
# prediction accuracy before attack
model
=
ModelToBeAttacked
(
net
)
batch_num
=
3
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
images
),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %g"
,
accuracy
)
# attacking
attack
=
GeneticAttack
(
model
=
model
,
pop_size
=
6
,
mutation_rate
=
0.05
,
per_bounds
=
0.1
,
step_size
=
0.25
,
temp
=
0.1
,
sparse
=
True
)
targeted_labels
=
np
.
random
.
randint
(
0
,
10
,
size
=
len
(
true_labels
))
for
i
,
true_l
in
enumerate
(
true_labels
):
if
targeted_labels
[
i
]
==
true_l
:
targeted_labels
[
i
]
=
(
targeted_labels
[
i
]
+
1
)
%
10
start_time
=
time
.
clock
()
success_list
,
adv_data
,
query_list
=
attack
.
generate
(
np
.
concatenate
(
test_images
),
targeted_labels
)
stop_time
=
time
.
clock
()
LOGGER
.
info
(
TAG
,
'success_list: %s'
,
success_list
)
LOGGER
.
info
(
TAG
,
'average of query times is : %s'
,
np
.
mean
(
query_list
))
pred_logits_adv
=
model
.
predict
(
adv_data
)
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
pred_lables_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_lables_adv
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %g"
,
accuracy_adv
)
test_labels_onehot
=
np
.
eye
(
10
)[
true_labels
]
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
),
test_labels_onehot
,
adv_data
,
pred_logits_adv
,
targeted
=
True
,
target_label
=
targeted_labels
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
LOGGER
.
info
(
TAG
,
'The average structural similarity between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_ssim
())
LOGGER
.
info
(
TAG
,
'The average costing time is %s'
,
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
def
test_genetic_attack_on_mnist_cpu
():
"""
Genetic-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -134,4 +215,4 @@ def test_genetic_attack_on_mnist():
...
@@ -134,4 +215,4 @@ def test_genetic_attack_on_mnist():
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_genetic_attack_on_mnist
()
test_genetic_attack_on_mnist
_cpu
()
example/mnist_demo/mnist_attack_hsja.py
浏览文件 @
151e10e8
...
@@ -27,10 +27,8 @@ from mindarmour.utils.logger import LogUtil
...
@@ -27,10 +27,8 @@ from mindarmour.utils.logger import LogUtil
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
context
.
set_context
(
device_target
=
"Ascend"
)
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'HopSkipJumpAttack'
TAG
=
'HopSkipJumpAttack'
...
@@ -79,6 +77,81 @@ def test_hsja_mnist_attack():
...
@@ -79,6 +77,81 @@ def test_hsja_mnist_attack():
"""
"""
hsja-Attack test
hsja-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
context
.
set_context
(
device_target
=
"Ascend"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
net
.
set_train
(
False
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
# prediction accuracy before attack
model
=
ModelToBeAttacked
(
net
)
batch_num
=
5
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
images
),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %s"
,
accuracy
)
test_images
=
np
.
concatenate
(
test_images
)
# attacking
norm
=
'l2'
search
=
'grid_search'
target
=
False
attack
=
HopSkipJumpAttack
(
model
,
constraint
=
norm
,
stepsize_search
=
search
)
if
target
:
target_labels
=
random_target_labels
(
true_labels
)
target_images
=
create_target_images
(
test_images
,
predict_labels
,
target_labels
)
attack
.
set_target_images
(
target_images
)
success_list
,
adv_data
,
_
=
attack
.
generate
(
test_images
,
target_labels
)
else
:
success_list
,
adv_data
,
_
=
attack
.
generate
(
test_images
,
None
)
adv_datas
=
[]
gts
=
[]
for
success
,
adv
,
gt
in
zip
(
success_list
,
adv_data
,
true_labels
):
if
success
:
adv_datas
.
append
(
adv
)
gts
.
append
(
gt
)
if
gts
:
adv_datas
=
np
.
concatenate
(
np
.
asarray
(
adv_datas
),
axis
=
0
)
gts
=
np
.
asarray
(
gts
)
pred_logits_adv
=
model
.
predict
(
adv_datas
)
pred_lables_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_lables_adv
,
gts
))
mis_rate
=
(
1
-
accuracy_adv
)
*
(
len
(
adv_datas
)
/
len
(
success_list
))
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
mis_rate
)
def
test_hsja_mnist_attack_cpu
():
"""
hsja-Attack test
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
context
.
set_context
(
device_target
=
"CPU"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -141,9 +214,10 @@ def test_hsja_mnist_attack():
...
@@ -141,9 +214,10 @@ def test_hsja_mnist_attack():
pred_logits_adv
=
model
.
predict
(
adv_datas
)
pred_logits_adv
=
model
.
predict
(
adv_datas
)
pred_lables_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
pred_lables_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_lables_adv
,
gts
))
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_lables_adv
,
gts
))
mis_rate
=
(
1
-
accuracy_adv
)
*
(
len
(
adv_datas
)
/
len
(
success_list
))
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
accuracy_adv
)
mis_rate
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_hsja_mnist_attack
()
test_hsja_mnist_attack
_cpu
()
example/mnist_demo/mnist_attack_jsma.py
浏览文件 @
151e10e8
...
@@ -27,13 +27,14 @@ from mindarmour.attacks.jsma import JSMAAttack
...
@@ -27,13 +27,14 @@ from mindarmour.attacks.jsma import JSMAAttack
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'JSMA_Test'
TAG
=
'JSMA_Test'
...
@@ -46,6 +47,85 @@ def test_jsma_attack():
...
@@ -46,6 +47,85 @@ def test_jsma_attack():
"""
"""
JSMA-Attack test
JSMA-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
# prediction accuracy before attack
model
=
Model
(
net
)
batch_num
=
3
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
Tensor
(
images
)).
asnumpy
(),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
targeted_labels
=
np
.
random
.
randint
(
0
,
10
,
size
=
len
(
true_labels
))
for
i
,
true_l
in
enumerate
(
true_labels
):
if
targeted_labels
[
i
]
==
true_l
:
targeted_labels
[
i
]
=
(
targeted_labels
[
i
]
+
1
)
%
10
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %g"
,
accuracy
)
# attacking
classes
=
10
attack
=
JSMAAttack
(
net
,
classes
)
start_time
=
time
.
clock
()
adv_data
=
attack
.
batch_generate
(
np
.
concatenate
(
test_images
),
targeted_labels
,
batch_size
=
32
)
stop_time
=
time
.
clock
()
pred_logits_adv
=
model
.
predict
(
Tensor
(
adv_data
)).
asnumpy
()
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
pred_lables_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_lables_adv
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %g"
,
accuracy_adv
)
test_labels
=
np
.
eye
(
10
)[
np
.
concatenate
(
test_labels
)]
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
).
transpose
(
0
,
2
,
3
,
1
),
test_labels
,
adv_data
.
transpose
(
0
,
2
,
3
,
1
),
pred_logits_adv
,
targeted
=
True
,
target_label
=
targeted_labels
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
LOGGER
.
info
(
TAG
,
'The average structural similarity between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_ssim
())
LOGGER
.
info
(
TAG
,
'The average costing time is %s'
,
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
def
test_jsma_attack_cpu
():
"""
JSMA-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -120,4 +200,4 @@ def test_jsma_attack():
...
@@ -120,4 +200,4 @@ def test_jsma_attack():
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_jsma_attack
()
test_jsma_attack
_cpu
()
example/mnist_demo/mnist_attack_lbfgs.py
浏览文件 @
151e10e8
...
@@ -20,6 +20,7 @@ from mindspore import Model
...
@@ -20,6 +20,7 @@ from mindspore import Model
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore
import
context
from
mindspore
import
context
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.nn
import
SoftmaxCrossEntropyWithLogits
from
scipy.special
import
softmax
from
scipy.special
import
softmax
from
lenet5_net
import
LeNet5
from
lenet5_net
import
LeNet5
...
@@ -27,13 +28,12 @@ from mindarmour.attacks.lbfgs import LBFGS
...
@@ -27,13 +28,12 @@ from mindarmour.attacks.lbfgs import LBFGS
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'LBFGS_Test'
TAG
=
'LBFGS_Test'
...
@@ -46,6 +46,7 @@ def test_lbfgs_attack():
...
@@ -46,6 +46,7 @@ def test_lbfgs_attack():
"""
"""
LBFGS-Attack test
LBFGS-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -127,5 +128,90 @@ def test_lbfgs_attack():
...
@@ -127,5 +128,90 @@ def test_lbfgs_attack():
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
def
test_lbfgs_attack_cpu
():
"""
LBFGS-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
# prediction accuracy before attack
model
=
Model
(
net
)
batch_num
=
3
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
Tensor
(
images
)).
asnumpy
(),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %s"
,
accuracy
)
# attacking
is_targeted
=
True
if
is_targeted
:
targeted_labels
=
np
.
random
.
randint
(
0
,
10
,
size
=
len
(
true_labels
)).
astype
(
np
.
int32
)
for
i
,
true_l
in
enumerate
(
true_labels
):
if
targeted_labels
[
i
]
==
true_l
:
targeted_labels
[
i
]
=
(
targeted_labels
[
i
]
+
1
)
%
10
else
:
targeted_labels
=
true_labels
.
astype
(
np
.
int32
)
loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
attack
=
LBFGS
(
net
,
is_targeted
=
is_targeted
,
loss_fn
=
loss
)
start_time
=
time
.
clock
()
adv_data
=
attack
.
batch_generate
(
np
.
concatenate
(
test_images
),
targeted_labels
,
batch_size
=
batch_size
)
stop_time
=
time
.
clock
()
pred_logits_adv
=
model
.
predict
(
Tensor
(
adv_data
)).
asnumpy
()
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
pred_labels_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_labels_adv
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %s"
,
accuracy_adv
)
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
).
transpose
(
0
,
2
,
3
,
1
),
np
.
eye
(
10
)[
true_labels
],
adv_data
.
transpose
(
0
,
2
,
3
,
1
),
pred_logits_adv
,
targeted
=
is_targeted
,
target_label
=
targeted_labels
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
LOGGER
.
info
(
TAG
,
'The average structural similarity between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_ssim
())
LOGGER
.
info
(
TAG
,
'The average costing time is %s'
,
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_lbfgs_attack
()
test_lbfgs_attack
_cpu
()
example/mnist_demo/mnist_attack_mdi2fgsm.py
浏览文件 @
151e10e8
...
@@ -20,6 +20,7 @@ from mindspore import Model
...
@@ -20,6 +20,7 @@ from mindspore import Model
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore
import
context
from
mindspore
import
context
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.nn
import
SoftmaxCrossEntropyWithLogits
from
scipy.special
import
softmax
from
scipy.special
import
softmax
from
lenet5_net
import
LeNet5
from
lenet5_net
import
LeNet5
...
@@ -28,8 +29,6 @@ from mindarmour.attacks.iterative_gradient_method import \
...
@@ -28,8 +29,6 @@ from mindarmour.attacks.iterative_gradient_method import \
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
...
@@ -47,6 +46,7 @@ def test_momentum_diverse_input_iterative_method():
...
@@ -47,6 +46,7 @@ def test_momentum_diverse_input_iterative_method():
"""
"""
M-DI2-FGSM Attack Test
M-DI2-FGSM Attack Test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -113,5 +113,77 @@ def test_momentum_diverse_input_iterative_method():
...
@@ -113,5 +113,77 @@ def test_momentum_diverse_input_iterative_method():
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
def
test_momentum_diverse_input_iterative_method_cpu
():
"""
M-DI2-FGSM Attack Test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
)
# prediction accuracy before attack
model
=
Model
(
net
)
batch_num
=
32
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
Tensor
(
images
)).
asnumpy
(),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %s"
,
accuracy
)
# attacking
loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
attack
=
MomentumDiverseInputIterativeMethod
(
net
,
loss_fn
=
loss
)
start_time
=
time
.
clock
()
adv_data
=
attack
.
batch_generate
(
np
.
concatenate
(
test_images
),
true_labels
,
batch_size
=
32
)
stop_time
=
time
.
clock
()
pred_logits_adv
=
model
.
predict
(
Tensor
(
adv_data
)).
asnumpy
()
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
pred_labels_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_labels_adv
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %s"
,
accuracy_adv
)
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
).
transpose
(
0
,
2
,
3
,
1
),
np
.
eye
(
10
)[
true_labels
],
adv_data
.
transpose
(
0
,
2
,
3
,
1
),
pred_logits_adv
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
LOGGER
.
info
(
TAG
,
'The average structural similarity between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_ssim
())
LOGGER
.
info
(
TAG
,
'The average costing time is %s'
,
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_momentum_diverse_input_iterative_method
()
test_momentum_diverse_input_iterative_method
_cpu
()
example/mnist_demo/mnist_attack_nes.py
浏览文件 @
151e10e8
...
@@ -27,10 +27,9 @@ from mindarmour.utils.logger import LogUtil
...
@@ -27,10 +27,9 @@ from mindarmour.utils.logger import LogUtil
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
context
.
set_context
(
device_target
=
"Ascend"
)
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'HopSkipJumpAttack'
TAG
=
'HopSkipJumpAttack'
...
@@ -88,6 +87,89 @@ def test_nes_mnist_attack():
...
@@ -88,6 +87,89 @@ def test_nes_mnist_attack():
"""
"""
hsja-Attack test
hsja-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
context
.
set_context
(
device_target
=
"Ascend"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
net
.
set_train
(
False
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
# prediction accuracy before attack
model
=
ModelToBeAttacked
(
net
)
# the number of batches of attacking samples
batch_num
=
5
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
images
),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %s"
,
accuracy
)
test_images
=
np
.
concatenate
(
test_images
)
# attacking
scene
=
'Query_Limit'
if
scene
==
'Query_Limit'
:
top_k
=
-
1
elif
scene
==
'Partial_Info'
:
top_k
=
5
elif
scene
==
'Label_Only'
:
top_k
=
5
success
=
0
queries_num
=
0
nes_instance
=
NES
(
model
,
scene
,
top_k
=
top_k
)
test_length
=
32
advs
=
[]
for
img_index
in
range
(
test_length
):
# Initial image and class selection
initial_img
=
test_images
[
img_index
]
orig_class
=
true_labels
[
img_index
]
initial_img
=
[
initial_img
]
target_class
=
random_target_labels
([
orig_class
],
true_labels
)
target_image
=
create_target_images
(
test_images
,
true_labels
,
target_class
)
nes_instance
.
set_target_images
(
target_image
)
tag
,
adv
,
queries
=
nes_instance
.
generate
(
initial_img
,
target_class
)
if
tag
[
0
]:
success
+=
1
queries_num
+=
queries
[
0
]
advs
.
append
(
adv
)
advs
=
np
.
reshape
(
advs
,
(
len
(
advs
),
1
,
32
,
32
))
adv_pred
=
np
.
argmax
(
model
.
predict
(
advs
),
axis
=
1
)
adv_accuracy
=
np
.
mean
(
np
.
equal
(
adv_pred
,
true_labels
[:
test_length
]))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %s"
,
adv_accuracy
)
def
test_nes_mnist_attack_cpu
():
"""
hsja-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
context
.
set_context
(
device_target
=
"CPU"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -164,4 +246,4 @@ def test_nes_mnist_attack():
...
@@ -164,4 +246,4 @@ def test_nes_mnist_attack():
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_nes_mnist_attack
()
test_nes_mnist_attack
_cpu
()
example/mnist_demo/mnist_attack_pgd.py
浏览文件 @
151e10e8
...
@@ -20,6 +20,7 @@ from mindspore import Model
...
@@ -20,6 +20,7 @@ from mindspore import Model
from
mindspore
import
Tensor
from
mindspore
import
Tensor
from
mindspore
import
context
from
mindspore
import
context
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.nn
import
SoftmaxCrossEntropyWithLogits
from
scipy.special
import
softmax
from
scipy.special
import
softmax
from
lenet5_net
import
LeNet5
from
lenet5_net
import
LeNet5
...
@@ -27,13 +28,12 @@ from mindarmour.attacks.iterative_gradient_method import ProjectedGradientDescen
...
@@ -27,13 +28,12 @@ from mindarmour.attacks.iterative_gradient_method import ProjectedGradientDescen
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'PGD_Test'
TAG
=
'PGD_Test'
...
@@ -46,6 +46,7 @@ def test_projected_gradient_descent_method():
...
@@ -46,6 +46,7 @@ def test_projected_gradient_descent_method():
"""
"""
PGD-Attack test
PGD-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -113,5 +114,78 @@ def test_projected_gradient_descent_method():
...
@@ -113,5 +114,78 @@ def test_projected_gradient_descent_method():
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
def
test_projected_gradient_descent_method_cpu
():
"""
PGD-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
)
# prediction accuracy before attack
model
=
Model
(
net
)
batch_num
=
32
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
Tensor
(
images
)).
asnumpy
(),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %s"
,
accuracy
)
# attacking
loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
attack
=
ProjectedGradientDescent
(
net
,
eps
=
0.3
,
loss_fn
=
loss
)
start_time
=
time
.
clock
()
adv_data
=
attack
.
batch_generate
(
np
.
concatenate
(
test_images
),
true_labels
,
batch_size
=
32
)
stop_time
=
time
.
clock
()
np
.
save
(
'./adv_data'
,
adv_data
)
pred_logits_adv
=
model
.
predict
(
Tensor
(
adv_data
)).
asnumpy
()
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
pred_labels_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_labels_adv
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %s"
,
accuracy_adv
)
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
).
transpose
(
0
,
2
,
3
,
1
),
np
.
eye
(
10
)[
true_labels
],
adv_data
.
transpose
(
0
,
2
,
3
,
1
),
pred_logits_adv
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
LOGGER
.
info
(
TAG
,
'The average structural similarity between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_ssim
())
LOGGER
.
info
(
TAG
,
'The average costing time is %s'
,
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_projected_gradient_descent_method
()
test_projected_gradient_descent_method
_cpu
()
example/mnist_demo/mnist_attack_pointwise.py
浏览文件 @
151e10e8
...
@@ -26,8 +26,6 @@ from mindarmour.attacks.black.pointwise_attack import PointWiseAttack
...
@@ -26,8 +26,6 @@ from mindarmour.attacks.black.pointwise_attack import PointWiseAttack
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
...
@@ -60,6 +58,85 @@ def test_pointwise_attack_on_mnist():
...
@@ -60,6 +58,85 @@ def test_pointwise_attack_on_mnist():
"""
"""
Salt-and-Pepper-Attack test
Salt-and-Pepper-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
# prediction accuracy before attack
model
=
ModelToBeAttacked
(
net
)
batch_num
=
3
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
images
),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %g"
,
accuracy
)
# attacking
is_target
=
False
attack
=
PointWiseAttack
(
model
=
model
,
is_targeted
=
is_target
)
if
is_target
:
targeted_labels
=
np
.
random
.
randint
(
0
,
10
,
size
=
len
(
true_labels
))
for
i
,
true_l
in
enumerate
(
true_labels
):
if
targeted_labels
[
i
]
==
true_l
:
targeted_labels
[
i
]
=
(
targeted_labels
[
i
]
+
1
)
%
10
else
:
targeted_labels
=
true_labels
success_list
,
adv_data
,
query_list
=
attack
.
generate
(
np
.
concatenate
(
test_images
),
targeted_labels
)
success_list
=
np
.
arange
(
success_list
.
shape
[
0
])[
success_list
]
LOGGER
.
info
(
TAG
,
'success_list: %s'
,
success_list
)
LOGGER
.
info
(
TAG
,
'average of query times is : %s'
,
np
.
mean
(
query_list
))
adv_preds
=
[]
for
ite_data
in
adv_data
:
pred_logits_adv
=
model
.
predict
(
ite_data
)
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
adv_preds
.
extend
(
pred_logits_adv
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
np
.
max
(
adv_preds
,
axis
=
1
),
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %g"
,
accuracy_adv
)
test_labels_onehot
=
np
.
eye
(
10
)[
true_labels
]
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
),
test_labels_onehot
,
adv_data
,
adv_preds
,
targeted
=
is_target
,
target_label
=
targeted_labels
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
def
test_pointwise_attack_on_mnist_cpu
():
"""
Salt-and-Pepper-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -134,4 +211,4 @@ def test_pointwise_attack_on_mnist():
...
@@ -134,4 +211,4 @@ def test_pointwise_attack_on_mnist():
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_pointwise_attack_on_mnist
()
test_pointwise_attack_on_mnist
_cpu
()
example/mnist_demo/mnist_attack_pso.py
浏览文件 @
151e10e8
...
@@ -27,12 +27,12 @@ from mindarmour.attacks.black.pso_attack import PSOAttack
...
@@ -27,12 +27,12 @@ from mindarmour.attacks.black.pso_attack import PSOAttack
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
'INFO'
)
TAG
=
'PSO_Attack'
TAG
=
'PSO_Attack'
...
@@ -58,6 +58,80 @@ def test_pso_attack_on_mnist():
...
@@ -58,6 +58,80 @@ def test_pso_attack_on_mnist():
"""
"""
PSO-Attack test
PSO-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
# prediction accuracy before attack
model
=
ModelToBeAttacked
(
net
)
batch_num
=
3
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
images
),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %s"
,
accuracy
)
# attacking
attack
=
PSOAttack
(
model
,
bounds
=
(
0.0
,
1.0
),
pm
=
0.5
,
sparse
=
True
)
start_time
=
time
.
clock
()
success_list
,
adv_data
,
query_list
=
attack
.
generate
(
np
.
concatenate
(
test_images
),
np
.
concatenate
(
test_labels
))
stop_time
=
time
.
clock
()
LOGGER
.
info
(
TAG
,
'success_list: %s'
,
success_list
)
LOGGER
.
info
(
TAG
,
'average of query times is : %s'
,
np
.
mean
(
query_list
))
pred_logits_adv
=
model
.
predict
(
adv_data
)
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
pred_labels_adv
=
np
.
argmax
(
pred_logits_adv
,
axis
=
1
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
pred_labels_adv
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %s"
,
accuracy_adv
)
test_labels_onehot
=
np
.
eye
(
10
)[
np
.
concatenate
(
test_labels
)]
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
),
test_labels_onehot
,
adv_data
,
pred_logits_adv
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
LOGGER
.
info
(
TAG
,
'The average structural similarity between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_ssim
())
LOGGER
.
info
(
TAG
,
'The average costing time is %s'
,
(
stop_time
-
start_time
)
/
(
batch_num
*
batch_size
))
def
test_pso_attack_on_mnist_cpu
():
"""
PSO-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -127,4 +201,4 @@ def test_pso_attack_on_mnist():
...
@@ -127,4 +201,4 @@ def test_pso_attack_on_mnist():
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_pso_attack_on_mnist
()
test_pso_attack_on_mnist
_cpu
()
example/mnist_demo/mnist_attack_salt_and_pepper.py
浏览文件 @
151e10e8
...
@@ -26,8 +26,6 @@ from mindarmour.attacks.black.salt_and_pepper_attack import SaltAndPepperNoiseAt
...
@@ -26,8 +26,6 @@ from mindarmour.attacks.black.salt_and_pepper_attack import SaltAndPepperNoiseAt
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.evaluations.attack_evaluation
import
AttackEvaluate
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
...
@@ -60,6 +58,89 @@ def test_salt_and_pepper_attack_on_mnist():
...
@@ -60,6 +58,89 @@ def test_salt_and_pepper_attack_on_mnist():
"""
"""
Salt-and-Pepper-Attack test
Salt-and-Pepper-Attack test
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
# get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
# prediction accuracy before attack
model
=
ModelToBeAttacked
(
net
)
batch_num
=
3
# the number of batches of attacking samples
test_images
=
[]
test_labels
=
[]
predict_labels
=
[]
i
=
0
for
data
in
ds
.
create_tuple_iterator
():
i
+=
1
images
=
data
[
0
].
astype
(
np
.
float32
)
labels
=
data
[
1
]
test_images
.
append
(
images
)
test_labels
.
append
(
labels
)
pred_labels
=
np
.
argmax
(
model
.
predict
(
images
),
axis
=
1
)
predict_labels
.
append
(
pred_labels
)
if
i
>=
batch_num
:
break
LOGGER
.
debug
(
TAG
,
'model input image shape is: {}'
.
format
(
np
.
array
(
test_images
).
shape
))
predict_labels
=
np
.
concatenate
(
predict_labels
)
true_labels
=
np
.
concatenate
(
test_labels
)
accuracy
=
np
.
mean
(
np
.
equal
(
predict_labels
,
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy before attacking is : %g"
,
accuracy
)
# attacking
is_target
=
False
attack
=
SaltAndPepperNoiseAttack
(
model
=
model
,
is_targeted
=
is_target
,
sparse
=
True
)
if
is_target
:
targeted_labels
=
np
.
random
.
randint
(
0
,
10
,
size
=
len
(
true_labels
))
for
i
,
true_l
in
enumerate
(
true_labels
):
if
targeted_labels
[
i
]
==
true_l
:
targeted_labels
[
i
]
=
(
targeted_labels
[
i
]
+
1
)
%
10
else
:
targeted_labels
=
true_labels
LOGGER
.
debug
(
TAG
,
'input shape is: {}'
.
format
(
np
.
concatenate
(
test_images
).
shape
))
success_list
,
adv_data
,
query_list
=
attack
.
generate
(
np
.
concatenate
(
test_images
),
targeted_labels
)
success_list
=
np
.
arange
(
success_list
.
shape
[
0
])[
success_list
]
LOGGER
.
info
(
TAG
,
'success_list: %s'
,
success_list
)
LOGGER
.
info
(
TAG
,
'average of query times is : %s'
,
np
.
mean
(
query_list
))
adv_preds
=
[]
for
ite_data
in
adv_data
:
pred_logits_adv
=
model
.
predict
(
ite_data
)
# rescale predict confidences into (0, 1).
pred_logits_adv
=
softmax
(
pred_logits_adv
,
axis
=
1
)
adv_preds
.
extend
(
pred_logits_adv
)
accuracy_adv
=
np
.
mean
(
np
.
equal
(
np
.
max
(
adv_preds
,
axis
=
1
),
true_labels
))
LOGGER
.
info
(
TAG
,
"prediction accuracy after attacking is : %g"
,
accuracy_adv
)
test_labels_onehot
=
np
.
eye
(
10
)[
true_labels
]
attack_evaluate
=
AttackEvaluate
(
np
.
concatenate
(
test_images
),
test_labels_onehot
,
adv_data
,
adv_preds
,
targeted
=
is_target
,
target_label
=
targeted_labels
)
LOGGER
.
info
(
TAG
,
'mis-classification rate of adversaries is : %s'
,
attack_evaluate
.
mis_classification_rate
())
LOGGER
.
info
(
TAG
,
'The average confidence of adversarial class is : %s'
,
attack_evaluate
.
avg_conf_adv_class
())
LOGGER
.
info
(
TAG
,
'The average confidence of true class is : %s'
,
attack_evaluate
.
avg_conf_true_class
())
LOGGER
.
info
(
TAG
,
'The average distance (l0, l2, linf) between original '
'samples and adversarial samples are: %s'
,
attack_evaluate
.
avg_lp_distance
())
def
test_salt_and_pepper_attack_on_mnist_cpu
():
"""
Salt-and-Pepper-Attack test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# upload trained network
# upload trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -138,4 +219,4 @@ def test_salt_and_pepper_attack_on_mnist():
...
@@ -138,4 +219,4 @@ def test_salt_and_pepper_attack_on_mnist():
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_salt_and_pepper_attack_on_mnist
()
test_salt_and_pepper_attack_on_mnist
_cpu
()
example/mnist_demo/mnist_defense_nad.py
浏览文件 @
151e10e8
...
@@ -31,7 +31,6 @@ from mindarmour.utils.logger import LogUtil
...
@@ -31,7 +31,6 @@ from mindarmour.utils.logger import LogUtil
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
TAG
=
'Nad_Example'
TAG
=
'Nad_Example'
...
@@ -46,6 +45,7 @@ def test_nad_method():
...
@@ -46,6 +45,7 @@ def test_nad_method():
"""
"""
NAD-Defense test.
NAD-Defense test.
"""
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"Ascend"
)
# 1. load trained network
# 1. load trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
net
=
LeNet5
()
...
@@ -136,6 +136,100 @@ def test_nad_method():
...
@@ -136,6 +136,100 @@ def test_nad_method():
np
.
mean
(
acc_list
))
np
.
mean
(
acc_list
))
def
test_nad_method_cpu
():
"""
NAD-Defense test for CPU device.
"""
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"CPU"
)
# 1. load trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
opt
=
nn
.
Momentum
(
net
.
trainable_params
(),
0.01
,
0.09
)
nad
=
NaturalAdversarialDefense
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
bounds
=
(
0.0
,
1.0
),
eps
=
0.3
)
# 2. get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds_test
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
inputs
=
[]
labels
=
[]
for
data
in
ds_test
.
create_tuple_iterator
():
inputs
.
append
(
data
[
0
].
astype
(
np
.
float32
))
labels
.
append
(
data
[
1
])
inputs
=
np
.
concatenate
(
inputs
)
labels
=
np
.
concatenate
(
labels
)
# 3. get accuracy of test data on original model
net
.
set_train
(
False
)
acc_list
=
[]
batchs
=
inputs
.
shape
[
0
]
//
batch_size
for
i
in
range
(
batchs
):
batch_inputs
=
inputs
[
i
*
batch_size
:
(
i
+
1
)
*
batch_size
]
batch_labels
=
labels
[
i
*
batch_size
:
(
i
+
1
)
*
batch_size
]
logits
=
net
(
Tensor
(
batch_inputs
)).
asnumpy
()
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of TEST data on original model is : %s'
,
np
.
mean
(
acc_list
))
# 4. get adv of test data
attack
=
FastGradientSignMethod
(
net
,
eps
=
0.3
,
loss_fn
=
loss
)
adv_data
=
attack
.
batch_generate
(
inputs
,
labels
)
LOGGER
.
debug
(
TAG
,
'adv_data.shape is : %s'
,
adv_data
.
shape
)
# 5. get accuracy of adv data on original model
net
.
set_train
(
False
)
acc_list
=
[]
batchs
=
adv_data
.
shape
[
0
]
//
batch_size
for
i
in
range
(
batchs
):
batch_inputs
=
adv_data
[
i
*
batch_size
:
(
i
+
1
)
*
batch_size
]
batch_labels
=
labels
[
i
*
batch_size
:
(
i
+
1
)
*
batch_size
]
logits
=
net
(
Tensor
(
batch_inputs
)).
asnumpy
()
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of adv data on original model is : %s'
,
np
.
mean
(
acc_list
))
# 6. defense
net
.
set_train
()
nad
.
batch_defense
(
inputs
,
labels
,
batch_size
=
32
,
epochs
=
10
)
# 7. get accuracy of test data on defensed model
net
.
set_train
(
False
)
acc_list
=
[]
batchs
=
inputs
.
shape
[
0
]
//
batch_size
for
i
in
range
(
batchs
):
batch_inputs
=
inputs
[
i
*
batch_size
:
(
i
+
1
)
*
batch_size
]
batch_labels
=
labels
[
i
*
batch_size
:
(
i
+
1
)
*
batch_size
]
logits
=
net
(
Tensor
(
batch_inputs
)).
asnumpy
()
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of TEST data on defensed model is : %s'
,
np
.
mean
(
acc_list
))
# 8. get accuracy of adv data on defensed model
acc_list
=
[]
batchs
=
adv_data
.
shape
[
0
]
//
batch_size
for
i
in
range
(
batchs
):
batch_inputs
=
adv_data
[
i
*
batch_size
:
(
i
+
1
)
*
batch_size
]
batch_labels
=
labels
[
i
*
batch_size
:
(
i
+
1
)
*
batch_size
]
logits
=
net
(
Tensor
(
batch_inputs
)).
asnumpy
()
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of adv data on defensed model is : %s'
,
np
.
mean
(
acc_list
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
LOGGER
.
set_level
(
logging
.
DEBUG
)
LOGGER
.
set_level
(
logging
.
DEBUG
)
test_nad_method
()
test_nad_method
_cpu
()
mindarmour/defenses/natural_adversarial_defense.py
浏览文件 @
151e10e8
...
@@ -46,7 +46,8 @@ class NaturalAdversarialDefense(AdversarialDefenseWithAttacks):
...
@@ -46,7 +46,8 @@ class NaturalAdversarialDefense(AdversarialDefenseWithAttacks):
attack
=
FastGradientSignMethod
(
network
,
attack
=
FastGradientSignMethod
(
network
,
eps
=
eps
,
eps
=
eps
,
alpha
=
None
,
alpha
=
None
,
bounds
=
bounds
)
bounds
=
bounds
,
loss_fn
=
loss_fn
)
super
(
NaturalAdversarialDefense
,
self
).
__init__
(
super
(
NaturalAdversarialDefense
,
self
).
__init__
(
network
,
network
,
[
attack
],
[
attack
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录