Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindarmour
提交
11b77a81
M
mindarmour
项目概览
MindSpore
/
mindarmour
通知
4
Star
2
Fork
3
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindarmour
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
11b77a81
编写于
8月 04, 2020
作者:
L
liuzhidan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update the notation of Adaclip
上级
a2a1b56b
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
5 addition
and
5 deletion
+5
-5
mindarmour/diff_privacy/mechanisms/mechanisms.py
mindarmour/diff_privacy/mechanisms/mechanisms.py
+5
-5
未找到文件。
mindarmour/diff_privacy/mechanisms/mechanisms.py
浏览文件 @
11b77a81
...
...
@@ -50,7 +50,7 @@ class ClipMechanismsFactory:
learning_rate(float): Learning rate of update norm clip. Default: 0.001.
target_unclipped_quantile(float): Target quantile of norm clip. Default: 0.9.
fraction_stddev(float): The stddev of Gaussian normal which used in
empirical_fraction, the formula is
$empirical_fraction + N(0, fraction_stddev)$
.
empirical_fraction, the formula is
:math:`empirical fraction + N(0, fraction sstddev)`
.
Default: 0.01.
seed(int): Original random seed, if seed=0 random normal will use secure
random number. IF seed!=0 random normal will generate values using
...
...
@@ -342,10 +342,10 @@ class _MechanismsParamsUpdater(Cell):
class
AdaClippingWithGaussianRandom
(
Cell
):
"""
Adaptive clipping. If `decay_policy` is 'Linear', the update formula
is
norm_bound = norm_bound - learning_rate*(beta - target_unclipped_quantile)
.
If `decay_policy` is 'Geometric', the update formula is
norm_
bound =
norm
_bound*exp(-learning_rate*(empirical_fraction - target_unclipped_quantile))
.
Adaptive clipping. If `decay_policy` is 'Linear', the update formula
:math:`norm bound = norm bound -
learning rate*(beta - target unclipped quantile)`
.
If `decay_policy` is 'Geometric', the update formula is
:math:`norm
bound =
norm
bound*exp(-learning rate*(empirical fraction - target unclipped quantile))`
.
where beta is the empirical fraction of samples with the value at most
`target_unclipped_quantile`.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录