提交 0b17c39d 编写于 作者: J jin-xiulang

Fix several api issues

上级 339595a3
...@@ -93,7 +93,7 @@ class Fuzzer: ...@@ -93,7 +93,7 @@ class Fuzzer:
>>> {'method': 'Translate', 'params': {'x_bias': 0.1, 'y_bias': 0.2}}, >>> {'method': 'Translate', 'params': {'x_bias': 0.1, 'y_bias': 0.2}},
>>> {'method': 'FGSM', 'params': {'eps': 0.1, 'alpha': 0.1}}] >>> {'method': 'FGSM', 'params': {'eps': 0.1, 'alpha': 0.1}}]
>>> train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) >>> train_images = np.random.rand(32, 1, 32, 32).astype(np.float32)
>>> model_fuzz_test = Fuzzer(model, train_images, 1000, 10) >>> model_fuzz_test = Fuzzer(model, train_images, 10, 1000)
>>> samples, labels, preds, strategies, report = model_fuzz_test.fuzzing(mutate_config, initial_seeds) >>> samples, labels, preds, strategies, report = model_fuzz_test.fuzzing(mutate_config, initial_seeds)
""" """
...@@ -141,8 +141,9 @@ class Fuzzer: ...@@ -141,8 +141,9 @@ class Fuzzer:
Args: Args:
mutate_config (list): Mutate configs. The format is mutate_config (list): Mutate configs. The format is
[{'method': 'Blur', 'params': {'auto_param': True}}, {'method': 'Contrast', 'params': {'factor': 2}}]. [{'method': 'Blur', 'params': {'auto_param': True}}, {'method': 'Contrast', 'params': {'factor': 2}}].
The support methods list is in `self._strategies`, and the params of each The supported methods list is in `self._strategies`, and the params of each method must within the
method must within the range of changeable parameters. range of changeable parameters. All supported methods are: 'Contrast', 'Brightness', 'Blur',
'Noise', 'Translate', 'Scale', 'Shear', 'Rotate', 'FGSM', 'PGD' and 'MDIIM'.
initial_seeds (numpy.ndarray): Initial seeds used to generate initial_seeds (numpy.ndarray): Initial seeds used to generate
mutated samples. mutated samples.
coverage_metric (str): Model coverage metric of neural networks. coverage_metric (str): Model coverage metric of neural networks.
......
...@@ -56,7 +56,7 @@ class ModelCoverageMetrics: ...@@ -56,7 +56,7 @@ class ModelCoverageMetrics:
>>> test_images = np.random.random((5000, 128)).astype(np.float32) >>> test_images = np.random.random((5000, 128)).astype(np.float32)
>>> model = Model(net) >>> model = Model(net)
>>> model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images) >>> model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images)
>>> model_fuzz_test.test_adequacy_coverage_calculate(test_images) >>> model_fuzz_test.calculate_coverage(test_images)
>>> print('KMNC of this test is : %s', model_fuzz_test.get_kmnc()) >>> print('KMNC of this test is : %s', model_fuzz_test.get_kmnc())
>>> print('NBC of this test is : %s', model_fuzz_test.get_nbc()) >>> print('NBC of this test is : %s', model_fuzz_test.get_nbc())
>>> print('SNAC of this test is : %s', model_fuzz_test.get_snac()) >>> print('SNAC of this test is : %s', model_fuzz_test.get_snac())
......
...@@ -78,7 +78,11 @@ class LogUtil: ...@@ -78,7 +78,11 @@ class LogUtil:
def set_level(self, level): def set_level(self, level):
""" """
Set the logging level of this logger, level must be an integer or a Set the logging level of this logger, level must be an integer or a
string. string. Supported levels are 'NOTSET'(integer: 0), 'ERROR'(integer: 1-40),
'WARNING'('WARN', integer: 1-30), 'INFO'(integer: 1-20) and 'DEBUG'(integer: 1-10).
For example, if logger.set_level('WARNING') or logger.set_level(21), then
logger.warn() and logger.error() in scripts would be printed while running,
while logger.info() or logger.debug() would not be printed.
Args: Args:
level (Union[int, str]): Level of logger. level (Union[int, str]): Level of logger.
......
...@@ -98,7 +98,7 @@ class GradWrapWithLoss(Cell): ...@@ -98,7 +98,7 @@ class GradWrapWithLoss(Cell):
Examples: Examples:
>>> data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32)*0.01) >>> data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32)*0.01)
>>> label = Tensor(np.ones([1, 10]).astype(np.float32)) >>> labels = Tensor(np.ones([1, 10]).astype(np.float32))
>>> net = NET() >>> net = NET()
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits()
>>> loss_net = WithLossCell(net, loss_fn) >>> loss_net = WithLossCell(net, loss_fn)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册