mnist_attack_salt_and_pepper.py 5.3 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
Z
zheng-huanhuan 已提交
15

Z
zheng-huanhuan 已提交
16 17 18 19
import numpy as np
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
Z
zheng-huanhuan 已提交
20
from scipy.special import softmax
Z
zheng-huanhuan 已提交
21

Z
zheng-huanhuan 已提交
22
from lenet5_net import LeNet5
Z
zheng-huanhuan 已提交
23
from mindarmour.attacks.black.black_model import BlackModel
Z
zheng-huanhuan 已提交
24
from mindarmour.attacks.black.salt_and_pepper_attack import SaltAndPepperNoiseAttack
Z
zheng-huanhuan 已提交
25
from mindarmour.evaluations.attack_evaluation import AttackEvaluate
Z
zheng-huanhuan 已提交
26
from mindarmour.utils.logger import LogUtil
Z
zheng-huanhuan 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

sys.path.append("..")
from data_processing import generate_mnist_dataset

LOGGER = LogUtil.get_instance()
TAG = 'Salt_and_Pepper_Attack'
LOGGER.set_level('DEBUG')


class ModelToBeAttacked(BlackModel):
    """model to be attack"""

    def __init__(self, network):
        super(ModelToBeAttacked, self).__init__()
        self._network = network

    def predict(self, inputs):
        """predict"""
        if len(inputs.shape) == 3:
            inputs = inputs[np.newaxis, :]
        result = self._network(Tensor(inputs.astype(np.float32)))
        return result.asnumpy()


def test_salt_and_pepper_attack_on_mnist():
    """
    Salt-and-Pepper-Attack test
    """
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size)

    # prediction accuracy before attack
    model = ModelToBeAttacked(net)
    batch_num = 3  # the number of batches of attacking samples
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(images), axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    LOGGER.debug(TAG, 'model input image shape is: {}'.format(np.array(test_images).shape))
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.concatenate(test_labels)
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy)

    # attacking
    is_target = False
    attack = SaltAndPepperNoiseAttack(model=model,
                                      is_targeted=is_target,
                                      sparse=True)
    if is_target:
        targeted_labels = np.random.randint(0, 10, size=len(true_labels))
Z
zheng-huanhuan 已提交
96 97
        for i, true_l in enumerate(true_labels):
            if targeted_labels[i] == true_l:
Z
zheng-huanhuan 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                targeted_labels[i] = (targeted_labels[i] + 1) % 10
    else:
        targeted_labels = true_labels
    LOGGER.debug(TAG, 'input shape is: {}'.format(np.concatenate(test_images).shape))
    success_list, adv_data, query_list = attack.generate(
        np.concatenate(test_images), targeted_labels)
    success_list = np.arange(success_list.shape[0])[success_list]
    LOGGER.info(TAG, 'success_list: %s', success_list)
    LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list))
    adv_preds = []
    for ite_data in adv_data:
        pred_logits_adv = model.predict(ite_data)
        # rescale predict confidences into (0, 1).
        pred_logits_adv = softmax(pred_logits_adv, axis=1)
        adv_preds.extend(pred_logits_adv)
    accuracy_adv = np.mean(np.equal(np.max(adv_preds, axis=1), true_labels))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
                accuracy_adv)
    test_labels_onehot = np.eye(10)[true_labels]
    attack_evaluate = AttackEvaluate(np.concatenate(test_images),
                                     test_labels_onehot, adv_data,
                                     adv_preds, targeted=is_target,
                                     target_label=targeted_labels)
    LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
                attack_evaluate.mis_classification_rate())
    LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
                attack_evaluate.avg_conf_adv_class())
    LOGGER.info(TAG, 'The average confidence of true class is : %s',
                attack_evaluate.avg_conf_true_class())
    LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
                     'samples and adversarial samples are: %s',
                attack_evaluate.avg_lp_distance())


if __name__ == '__main__':
133 134 135
    # device_target can be "CPU", "GPU" or "Ascend"
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    test_salt_and_pepper_attack_on_mnist()