mnist_evaluation.py 13.1 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""evaluate example"""
import sys
import os
import time
import numpy as np
from scipy.special import softmax

from lenet5_net import LeNet5
from mindspore import Model
from mindspore import Tensor
from mindspore import context
from mindspore import nn
from mindspore.nn import Cell
from mindspore.ops.operations import TensorAdd
from mindspore.nn import SoftmaxCrossEntropyWithLogits
from mindspore.train.serialization import load_checkpoint, load_param_into_net

from mindarmour.attacks import FastGradientSignMethod
from mindarmour.attacks import GeneticAttack
from mindarmour.attacks.black.black_model import BlackModel
from mindarmour.defenses import NaturalAdversarialDefense
from mindarmour.evaluations import BlackDefenseEvaluate
from mindarmour.evaluations import DefenseEvaluate
from mindarmour.utils.logger import LogUtil
from mindarmour.detectors.black.similarity_detector import SimilarityDetector

sys.path.append("..")
from data_processing import generate_mnist_dataset

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

LOGGER = LogUtil.get_instance()
TAG = 'Defense_Evaluate_Example'


def get_detector(train_images):
    encoder = Model(EncoderNet(encode_dim=256))
    detector = SimilarityDetector(max_k_neighbor=50, trans_model=encoder)
    detector.fit(inputs=train_images)
    return detector


class EncoderNet(Cell):
    """
    Similarity encoder for input data
    """

    def __init__(self, encode_dim):
        super(EncoderNet, self).__init__()
        self._encode_dim = encode_dim
        self.add = TensorAdd()

    def construct(self, inputs):
        """
        construct the neural network
        Args:
            inputs (Tensor): input data to neural network.
        Returns:
            Tensor, output of neural network.
        """
        return self.add(inputs, inputs)

    def get_encode_dim(self):
        """
        Get the dimension of encoded inputs

        Returns:
            int, dimension of encoded inputs.
        """
        return self._encode_dim


class ModelToBeAttacked(BlackModel):
    """
    model to be attack
    """

    def __init__(self, network, defense=False, train_images=None):
        super(ModelToBeAttacked, self).__init__()
        self._network = network
        self._queries = []
        self._defense = defense
        self._detector = None
        self._detected_res = []
        if self._defense:
            self._detector = get_detector(train_images)

    def predict(self, inputs):
        """
        predict function
        """
        query_num = inputs.shape[0]
        results = []
        if self._detector:
            for i in range(query_num):
                query = np.expand_dims(inputs[i].astype(np.float32), axis=0)
                result = self._network(Tensor(query)).asnumpy()
                det_num = len(self._detector.get_detected_queries())
                self._detector.detect([query])
                new_det_num = len(self._detector.get_detected_queries())
                # If attack query detected, return random predict result
                if new_det_num > det_num:
                    results.append(result + np.random.rand(*result.shape))
                    self._detected_res.append(True)
                else:
                    results.append(result)
                    self._detected_res.append(False)
            results = np.concatenate(results)
        else:
            results = self._network(Tensor(inputs.astype(np.float32))).asnumpy()
        return results

    def get_detected_result(self):
        return self._detected_res


def test_black_defense():
    # load trained network
    current_dir = os.path.dirname(os.path.abspath(__file__))
    ckpt_name = os.path.abspath(os.path.join(
        current_dir, './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'))
    # ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    wb_net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(wb_net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds_test = generate_mnist_dataset(data_list, batch_size=batch_size,
                                     sparse=False)
    inputs = []
    labels = []
    for data in ds_test.create_tuple_iterator():
        inputs.append(data[0].astype(np.float32))
        labels.append(data[1])
    inputs = np.concatenate(inputs).astype(np.float32)
    labels = np.concatenate(labels).astype(np.float32)
    labels_sparse = np.argmax(labels, axis=1)

    target_label = np.random.randint(0, 10, size=labels_sparse.shape[0])
    for idx in range(labels_sparse.shape[0]):
        while target_label[idx] == labels_sparse[idx]:
            target_label[idx] = np.random.randint(0, 10)
    target_label = np.eye(10)[target_label].astype(np.float32)

    attacked_size = 50
    benign_size = 500

    attacked_sample = inputs[:attacked_size]
    attacked_true_label = labels[:attacked_size]
    benign_sample = inputs[attacked_size:attacked_size + benign_size]

    wb_model = ModelToBeAttacked(wb_net)

    # gen white-box adversarial examples of test data
    wb_attack = FastGradientSignMethod(wb_net, eps=0.3)
    wb_adv_sample = wb_attack.generate(attacked_sample,
                                       attacked_true_label)

    wb_raw_preds = softmax(wb_model.predict(wb_adv_sample), axis=1)
    accuracy_test = np.mean(
        np.equal(np.argmax(wb_model.predict(attacked_sample), axis=1),
                 np.argmax(attacked_true_label, axis=1)))
    LOGGER.info(TAG, "prediction accuracy before white-box attack is : %s",
                accuracy_test)
    accuracy_adv = np.mean(np.equal(np.argmax(wb_raw_preds, axis=1),
                                    np.argmax(attacked_true_label, axis=1)))
    LOGGER.info(TAG, "prediction accuracy after white-box attack is : %s",
                accuracy_adv)

    # improve the robustness of model with white-box adversarial examples
    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
    opt = nn.Momentum(wb_net.trainable_params(), 0.01, 0.09)

    nad = NaturalAdversarialDefense(wb_net, loss_fn=loss, optimizer=opt,
                                    bounds=(0.0, 1.0), eps=0.3)
    wb_net.set_train(False)
    nad.batch_defense(inputs[:5000], labels[:5000], batch_size=32, epochs=10)

    wb_def_preds = wb_net(Tensor(wb_adv_sample)).asnumpy()
    wb_def_preds = softmax(wb_def_preds, axis=1)
    accuracy_def = np.mean(np.equal(np.argmax(wb_def_preds, axis=1),
                                    np.argmax(attacked_true_label, axis=1)))
    LOGGER.info(TAG, "prediction accuracy after defense is : %s", accuracy_def)

    # calculate defense evaluation metrics for defense against white-box attack
    wb_def_evaluate = DefenseEvaluate(wb_raw_preds, wb_def_preds,
                                      np.argmax(attacked_true_label, axis=1))
    LOGGER.info(TAG, 'defense evaluation for white-box adversarial attack')
    LOGGER.info(TAG,
                'classification accuracy variance (CAV) is : {:.2f}'.format(
                    wb_def_evaluate.cav()))
    LOGGER.info(TAG, 'classification rectify ratio (CRR) is : {:.2f}'.format(
        wb_def_evaluate.crr()))
    LOGGER.info(TAG, 'classification sacrifice ratio (CSR) is : {:.2f}'.format(
        wb_def_evaluate.csr()))
    LOGGER.info(TAG,
                'classification confidence variance (CCV) is : {:.2f}'.format(
                    wb_def_evaluate.ccv()))
    LOGGER.info(TAG, 'classification output stability is : {:.2f}'.format(
        wb_def_evaluate.cos()))

    # calculate defense evaluation metrics for defense against black-box attack
    LOGGER.info(TAG, 'defense evaluation for black-box adversarial attack')
    bb_raw_preds = []
    bb_def_preds = []
    raw_query_counts = []
    raw_query_time = []
    def_query_counts = []
    def_query_time = []
    def_detection_counts = []

    # gen black-box adversarial examples of test data
    bb_net = LeNet5()
    load_param_into_net(bb_net, load_dict)
    bb_model = ModelToBeAttacked(bb_net, defense=False)
    attack_rm = GeneticAttack(model=bb_model, pop_size=6, mutation_rate=0.05,
                              per_bounds=0.1, step_size=0.25, temp=0.1,
                              sparse=False)
    attack_target_label = target_label[:attacked_size]
    true_label = labels_sparse[:attacked_size + benign_size]
    # evaluate robustness of original model
    # gen black-box adversarial examples of test data
    for idx in range(attacked_size):
        raw_st = time.time()
        raw_sl, raw_a, raw_qc = attack_rm.generate(
            np.expand_dims(attacked_sample[idx], axis=0),
            np.expand_dims(attack_target_label[idx], axis=0))
        raw_t = time.time() - raw_st
        bb_raw_preds.extend(softmax(bb_model.predict(raw_a), axis=1))
        raw_query_counts.extend(raw_qc)
        raw_query_time.append(raw_t)

    for idx in range(benign_size):
        raw_st = time.time()
        bb_raw_pred = softmax(
            bb_model.predict(np.expand_dims(benign_sample[idx], axis=0)),
            axis=1)
        raw_t = time.time() - raw_st
        bb_raw_preds.extend(bb_raw_pred)
        raw_query_counts.extend([0])
        raw_query_time.append(raw_t)

    accuracy_test = np.mean(
        np.equal(np.argmax(bb_raw_preds[0:len(attack_target_label)], axis=1),
                 np.argmax(attack_target_label, axis=1)))
    LOGGER.info(TAG, "attack success before adv defense is : %s",
                accuracy_test)

    # improve the robustness of model with similarity-based detector
    bb_def_model = ModelToBeAttacked(bb_net, defense=True,
                                     train_images=inputs[0:6000])
    # attack defensed model
    attack_dm = GeneticAttack(model=bb_def_model, pop_size=6,
                              mutation_rate=0.05,
                              per_bounds=0.1, step_size=0.25, temp=0.1,
                              sparse=False)
    for idx in range(attacked_size):
        def_st = time.time()
        def_sl, def_a, def_qc = attack_dm.generate(
            np.expand_dims(attacked_sample[idx], axis=0),
            np.expand_dims(attack_target_label[idx], axis=0))
        def_t = time.time() - def_st
        det_res = bb_def_model.get_detected_result()
        def_detection_counts.append(np.sum(det_res[-def_qc[0]:]))
        bb_def_preds.extend(softmax(bb_def_model.predict(def_a), axis=1))
        def_query_counts.extend(def_qc)
        def_query_time.append(def_t)

    for idx in range(benign_size):
        def_st = time.time()
        bb_def_pred = softmax(
            bb_def_model.predict(np.expand_dims(benign_sample[idx], axis=0)),
            axis=1)
        def_t = time.time() - def_st
        det_res = bb_def_model.get_detected_result()
        def_detection_counts.append(np.sum(det_res[-1]))
        bb_def_preds.extend(bb_def_pred)
        def_query_counts.extend([0])
        def_query_time.append(def_t)

    accuracy_adv = np.mean(
        np.equal(np.argmax(bb_def_preds[0:len(attack_target_label)], axis=1),
                 np.argmax(attack_target_label, axis=1)))
    LOGGER.info(TAG, "attack success rate after adv defense is : %s",
                accuracy_adv)

    bb_raw_preds = np.array(bb_raw_preds).astype(np.float32)
    bb_def_preds = np.array(bb_def_preds).astype(np.float32)
    # check evaluate data
    max_queries = 6000

    def_evaluate = BlackDefenseEvaluate(bb_raw_preds, bb_def_preds,
                                        np.array(raw_query_counts),
                                        np.array(def_query_counts),
                                        np.array(raw_query_time),
                                        np.array(def_query_time),
                                        np.array(def_detection_counts),
                                        true_label, max_queries)

    LOGGER.info(TAG, 'query count variance of adversaries is : {:.2f}'.format(
        def_evaluate.qcv()))
    LOGGER.info(TAG, 'attack success rate variance of adversaries '
                     'is : {:.2f}'.format(def_evaluate.asv()))
    LOGGER.info(TAG, 'false positive rate (FPR) of the query-based detector '
                     'is : {:.2f}'.format(def_evaluate.fpr()))
    LOGGER.info(TAG, 'the benign query response time variance (QRV) '
                     'is : {:.2f}'.format(def_evaluate.qrv()))


if __name__ == '__main__':
    test_black_defense()