test_iterative_gradient_method.py 4.3 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Iterative-gradient Attack test.
"""
import numpy as np
import pytest

from mindspore.ops import operations as P
from mindspore.nn import Cell
from mindspore import context

from mindarmour.attacks import BasicIterativeMethod
from mindarmour.attacks import MomentumIterativeMethod
from mindarmour.attacks import ProjectedGradientDescent
from mindarmour.attacks import IterativeGradientMethod

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


# for user
class Net(Cell):
    """
    Construct the network of target model.

    Examples:
        >>> net = Net()
    """

    def __init__(self):
        super(Net, self).__init__()
        self._softmax = P.Softmax()

    def construct(self, inputs):
        """
        Construct network.

        Args:
            inputs (Tensor): Input data.
        """
        out = self._softmax(inputs)
        return out


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_basic_iterative_method():
    """
    Basic iterative method unit test.
    """
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(3)[label].astype(np.float32)

    for i in range(5):
        net = Net()
        attack = BasicIterativeMethod(net, nb_iter=i + 1)
        ms_adv_x = attack.generate(input_np, label)
        assert np.any(
            ms_adv_x != input_np), 'Basic iterative method: generate value' \
                                   ' must not be equal to original value.'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_momentum_iterative_method():
    """
    Momentum iterative method unit test.
    """
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(3)[label].astype(np.float32)

    for i in range(5):
        attack = MomentumIterativeMethod(Net(), nb_iter=i + 1)
        ms_adv_x = attack.generate(input_np, label)
        assert np.any(ms_adv_x != input_np), 'Basic iterative method: generate' \
                                             ' value must not be equal to' \
                                             ' original value.'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_projected_gradient_descent_method():
    """
    Projected gradient descent method unit test.
    """
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(3)[label].astype(np.float32)

    for i in range(5):
        attack = ProjectedGradientDescent(Net(), nb_iter=i + 1)
        ms_adv_x = attack.generate(input_np, label)

        assert np.any(
            ms_adv_x != input_np), 'Projected gradient descent method: ' \
                                   'generate value must not be equal to' \
                                   ' original value.'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_error():
    with pytest.raises(ValueError):
        # check_param_multi_types
        assert IterativeGradientMethod(Net(), bounds=None)
    attack = IterativeGradientMethod(Net(), bounds=(0.0, 1.0))
    with pytest.raises(NotImplementedError):
        input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
        label = np.asarray([2], np.int32)
        label = np.eye(3)[label].astype(np.float32)
        assert attack.generate(input_np, label)