mnist_attack_lbfgs.py 8.8 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import time
Z
zheng-huanhuan 已提交
16

Z
zheng-huanhuan 已提交
17 18 19 20 21 22
import numpy as np
import pytest
from mindspore import Model
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
23
from mindspore.nn import SoftmaxCrossEntropyWithLogits
Z
zheng-huanhuan 已提交
24
from scipy.special import softmax
Z
zheng-huanhuan 已提交
25

Z
zheng-huanhuan 已提交
26
from lenet5_net import LeNet5
Z
zheng-huanhuan 已提交
27 28
from mindarmour.attacks.lbfgs import LBFGS
from mindarmour.evaluations.attack_evaluation import AttackEvaluate
Z
zheng-huanhuan 已提交
29
from mindarmour.utils.logger import LogUtil
Z
zheng-huanhuan 已提交
30 31 32 33 34 35


sys.path.append("..")
from data_processing import generate_mnist_dataset

LOGGER = LogUtil.get_instance()
36
LOGGER.set_level('INFO')
Z
zheng-huanhuan 已提交
37 38 39 40 41 42 43 44 45 46 47 48
TAG = 'LBFGS_Test'


@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_lbfgs_attack():
    """
    LBFGS-Attack test
    """
49
    context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
Z
zheng-huanhuan 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size, sparse=False)

    # prediction accuracy before attack
    model = Model(net)
    batch_num = 3  # the number of batches of attacking samples
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
                                axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.argmax(np.concatenate(test_labels), axis=1)
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)

    # attacking
    is_targeted = True
    if is_targeted:
        targeted_labels = np.random.randint(0, 10, size=len(true_labels)).astype(np.int32)
Z
zheng-huanhuan 已提交
88 89
        for i, true_l in enumerate(true_labels):
            if targeted_labels[i] == true_l:
Z
zheng-huanhuan 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
                targeted_labels[i] = (targeted_labels[i] + 1) % 10
    else:
        targeted_labels = true_labels.astype(np.int32)
    targeted_labels = np.eye(10)[targeted_labels].astype(np.float32)
    attack = LBFGS(net, is_targeted=is_targeted)
    start_time = time.clock()
    adv_data = attack.batch_generate(np.concatenate(test_images),
                                     targeted_labels,
                                     batch_size=batch_size)
    stop_time = time.clock()
    pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
    # rescale predict confidences into (0, 1).
    pred_logits_adv = softmax(pred_logits_adv, axis=1)
    pred_labels_adv = np.argmax(pred_logits_adv, axis=1)

    accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
                accuracy_adv)
    attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1),
                                     np.concatenate(test_labels),
                                     adv_data.transpose(0, 2, 3, 1),
                                     pred_logits_adv,
                                     targeted=is_targeted,
                                     target_label=np.argmax(targeted_labels,
                                                            axis=1))
    LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
                attack_evaluate.mis_classification_rate())
    LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
                attack_evaluate.avg_conf_adv_class())
    LOGGER.info(TAG, 'The average confidence of true class is : %s',
                attack_evaluate.avg_conf_true_class())
    LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
                     'samples and adversarial samples are: %s',
                attack_evaluate.avg_lp_distance())
    LOGGER.info(TAG, 'The average structural similarity between original '
                     'samples and adversarial samples are: %s',
                attack_evaluate.avg_ssim())
    LOGGER.info(TAG, 'The average costing time is %s',
                (stop_time - start_time)/(batch_num*batch_size))


131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def test_lbfgs_attack_cpu():
    """
    LBFGS-Attack test for CPU device.
    """
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size)

    # prediction accuracy before attack
    model = Model(net)
    batch_num = 3  # the number of batches of attacking samples
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
                                axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.concatenate(test_labels)
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)

    # attacking
    is_targeted = True
    if is_targeted:
        targeted_labels = np.random.randint(0, 10, size=len(true_labels)).astype(np.int32)
        for i, true_l in enumerate(true_labels):
            if targeted_labels[i] == true_l:
                targeted_labels[i] = (targeted_labels[i] + 1) % 10
    else:
        targeted_labels = true_labels.astype(np.int32)
    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    attack = LBFGS(net, is_targeted=is_targeted, loss_fn=loss)
    start_time = time.clock()
    adv_data = attack.batch_generate(np.concatenate(test_images),
                                     targeted_labels,
                                     batch_size=batch_size)
    stop_time = time.clock()
    pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
    # rescale predict confidences into (0, 1).
    pred_logits_adv = softmax(pred_logits_adv, axis=1)
    pred_labels_adv = np.argmax(pred_logits_adv, axis=1)

    accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
                accuracy_adv)
    attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1),
                                     np.eye(10)[true_labels],
                                     adv_data.transpose(0, 2, 3, 1),
                                     pred_logits_adv,
                                     targeted=is_targeted,
                                     target_label=targeted_labels)
    LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
                attack_evaluate.mis_classification_rate())
    LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
                attack_evaluate.avg_conf_adv_class())
    LOGGER.info(TAG, 'The average confidence of true class is : %s',
                attack_evaluate.avg_conf_true_class())
    LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
                     'samples and adversarial samples are: %s',
                attack_evaluate.avg_lp_distance())
    LOGGER.info(TAG, 'The average structural similarity between original '
                     'samples and adversarial samples are: %s',
                attack_evaluate.avg_ssim())
    LOGGER.info(TAG, 'The average costing time is %s',
                (stop_time - start_time)/(batch_num*batch_size))


Z
zheng-huanhuan 已提交
216
if __name__ == '__main__':
217
    test_lbfgs_attack_cpu()