lenet5_mnist_coverage.py 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys

Z
zheng-huanhuan 已提交
16
import numpy as np
17 18 19
from mindspore import Model
from mindspore import context
from mindspore.nn import SoftmaxCrossEntropyWithLogits
Z
zheng-huanhuan 已提交
20
from mindspore.train.serialization import load_checkpoint, load_param_into_net
21

Z
zheng-huanhuan 已提交
22
from lenet5_net import LeNet5
23 24
from mindarmour.attacks.gradient_method import FastGradientSignMethod
from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics
Z
zheng-huanhuan 已提交
25
from mindarmour.utils.logger import LogUtil
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

sys.path.append("..")
from data_processing import generate_mnist_dataset

LOGGER = LogUtil.get_instance()
TAG = 'Neuron coverage test'
LOGGER.set_level('INFO')


def test_lenet_mnist_coverage():
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)
    model = Model(net)

    # get training data
    data_list = "./MNIST_unzip/train"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
    train_images = []
    for data in ds.create_tuple_iterator():
        images = data[0].astype(np.float32)
        train_images.append(images)
    train_images = np.concatenate(train_images, axis=0)

    # initialize fuzz test with training dataset
    model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images)

    # fuzz test with original test data
    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
    test_images = []
    test_labels = []
    for data in ds.create_tuple_iterator():
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
    test_images = np.concatenate(test_images, axis=0)
    test_labels = np.concatenate(test_labels, axis=0)
    model_fuzz_test.test_adequacy_coverage_calculate(test_images)
    LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc())
    LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc())
    LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac())

    # generate adv_data
    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss)
    adv_data = attack.batch_generate(test_images, test_labels, batch_size=32)
    model_fuzz_test.test_adequacy_coverage_calculate(adv_data,
                                                     bias_coefficient=0.5)
    LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc())
    LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc())
    LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac())


if __name__ == '__main__':
    test_lenet_mnist_coverage()