test_cw.py 2.4 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
CW-Attack test.
"""
import numpy as np
import pytest

import mindspore.ops.operations as M
from mindspore.nn import Cell
from mindspore import context

24
from mindarmour.adv_robustness.attacks import CarliniWagnerL2Attack
Z
zheng-huanhuan 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90


context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


# for user
class Net(Cell):
    """
    Construct the network of target model.

    Examples:
        >>> net = Net()
    """

    def __init__(self):
        """
        Introduce the layers used for network construction.
        """
        super(Net, self).__init__()
        self._softmax = M.Softmax()

    def construct(self, inputs):
        """
        Construct network.

        Args:
            inputs (Tensor): Input data.
        """
        out = self._softmax(inputs)
        return out


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_cw_attack():
    """
    CW-Attack test
    """
    net = Net()
    input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
    label_np = np.array([3]).astype(np.int64)
    num_classes = input_np.shape[1]
    attack = CarliniWagnerL2Attack(net, num_classes, targeted=False)
    adv_data = attack.generate(input_np, label_np)
    assert np.any(input_np != adv_data)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_cw_attack_targeted():
    """
    CW-Attack test
    """
    net = Net()
    input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
    target_np = np.array([1]).astype(np.int64)
    num_classes = input_np.shape[1]
    attack = CarliniWagnerL2Attack(net, num_classes, targeted=True)
    adv_data = attack.generate(input_np, target_np)
    assert np.any(input_np != adv_data)