lenet5_dp_ada_gaussian.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training example of adaGaussian-mechanism differential privacy.
"""
import os

import mindspore.nn as nn
from mindspore import context
from mindspore.train.callback import ModelCheckpoint
from mindspore.train.callback import CheckpointConfig
from mindspore.train.callback import LossMonitor
from mindspore.nn.metrics import Accuracy
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.transforms.vision import Inter
import mindspore.common.dtype as mstype

from mindarmour.diff_privacy import DPModel
from mindarmour.diff_privacy import PrivacyMonitorFactory
from mindarmour.diff_privacy import NoiseMechanismsFactory
from mindarmour.utils.logger import LogUtil
from lenet5_net import LeNet5
J
jin-xiulang 已提交
37
from dp_ada_gaussian_config import mnist_cfg as cfg
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

LOGGER = LogUtil.get_instance()
LOGGER.set_level('INFO')
TAG = 'Lenet5_train'


def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1,
                           num_parallel_workers=1, sparse=True):
    """
    create dataset for training or testing
    """
    # define dataset
    ds1 = ds.MnistDataset(data_path)

    # define operation parameters
    resize_height, resize_width = 32, 32
    rescale = 1.0 / 255.0
    shift = 0.0

    # define map operations
    resize_op = CV.Resize((resize_height, resize_width),
                          interpolation=Inter.LINEAR)
    rescale_op = CV.Rescale(rescale, shift)
    hwc2chw_op = CV.HWC2CHW()
    type_cast_op = C.TypeCast(mstype.int32)

    # apply map operations on images
    if not sparse:
        one_hot_enco = C.OneHot(10)
        ds1 = ds1.map(input_columns="label", operations=one_hot_enco,
                      num_parallel_workers=num_parallel_workers)
        type_cast_op = C.TypeCast(mstype.float32)
    ds1 = ds1.map(input_columns="label", operations=type_cast_op,
                  num_parallel_workers=num_parallel_workers)
    ds1 = ds1.map(input_columns="image", operations=resize_op,
                  num_parallel_workers=num_parallel_workers)
    ds1 = ds1.map(input_columns="image", operations=rescale_op,
                  num_parallel_workers=num_parallel_workers)
    ds1 = ds1.map(input_columns="image", operations=hwc2chw_op,
                  num_parallel_workers=num_parallel_workers)

    # apply DatasetOps
    buffer_size = 10000
    ds1 = ds1.shuffle(buffer_size=buffer_size)
    ds1 = ds1.batch(batch_size, drop_remainder=True)
    ds1 = ds1.repeat(repeat_size)

    return ds1


if __name__ == "__main__":
    # This configure can run both in pynative mode and graph mode
    context.set_context(mode=context.GRAPH_MODE,
                        device_target=cfg.device_target)
    network = LeNet5()
93
    net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    config_ck = CheckpointConfig(
        save_checkpoint_steps=cfg.save_checkpoint_steps,
        keep_checkpoint_max=cfg.keep_checkpoint_max)
    ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
                                 directory='./trained_ckpt_file/',
                                 config=config_ck)

    # get training dataset
    ds_train = generate_mnist_dataset(os.path.join(cfg.data_path, "train"),
                                      cfg.batch_size)

    if cfg.micro_batches and cfg.batch_size % cfg.micro_batches != 0:
        raise ValueError(
            "Number of micro_batches should divide evenly batch_size")
    # Create a factory class of DP noise mechanisms, this method is adding noise
    # in gradients while training. Initial_noise_multiplier is suggested to be
    # greater than 1.0, otherwise the privacy budget would be huge, which means
    # that the privacy protection effect is weak. Mechanisms can be 'Gaussian'
    # or 'AdaGaussian', in which noise would be decayed with 'AdaGaussian'
    # mechanism while be constant with 'Gaussian' mechanism.
    noise_mech = NoiseMechanismsFactory().create(cfg.noise_mechanisms,
                                                 norm_bound=cfg.norm_bound,
                                                 initial_noise_multiplier=cfg.initial_noise_multiplier,
117
                                                 decay_policy='Exp')
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

    net_opt = nn.Momentum(params=network.trainable_params(),
                          learning_rate=cfg.lr, momentum=cfg.momentum)
    # Create a monitor for DP training. The function of the monitor is to
    # compute and print the privacy budget(eps and delta) while training.
    rdp_monitor = PrivacyMonitorFactory.create('rdp',
                                               num_samples=60000,
                                               batch_size=cfg.batch_size,
                                               initial_noise_multiplier=cfg.initial_noise_multiplier,
                                               per_print_times=234)
    # Create the DP model for training.
    model = DPModel(micro_batches=cfg.micro_batches,
                    norm_bound=cfg.norm_bound,
                    noise_mech=noise_mech,
                    network=network,
                    loss_fn=net_loss,
                    optimizer=net_opt,
                    metrics={"Accuracy": Accuracy()})

    LOGGER.info(TAG, "============== Starting Training ==============")
    model.train(cfg['epoch_size'], ds_train,
                callbacks=[ckpoint_cb, LossMonitor(), rdp_monitor],
                dataset_sink_mode=cfg.dataset_sink_mode)

    LOGGER.info(TAG, "============== Starting Testing ==============")
143
    ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-5_234.ckpt'
144 145 146 147 148 149
    param_dict = load_checkpoint(ckpt_file_name)
    load_param_into_net(network, param_dict)
    ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'),
                                     batch_size=cfg.batch_size)
    acc = model.eval(ds_eval, dataset_sink_mode=False)
    LOGGER.info(TAG, "============== Accuracy: %s  ==============", acc)