mock_net.py 3.2 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
mocked model for UT of defense algorithms.
"""
import numpy as np

from mindspore import nn
from mindspore import Tensor
from mindspore.nn import WithLossCell, TrainOneStepCell
from mindspore.nn.optim.momentum import Momentum
from mindspore import context
from mindspore.common.initializer import TruncatedNormal

from mindarmour.attacks import FastGradientSignMethod


def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
    weight = weight_variable()
    return nn.Conv2d(in_channels, out_channels,
                     kernel_size=kernel_size, stride=stride, padding=padding,
                     weight_init=weight, has_bias=False, pad_mode="valid")


def fc_with_initialize(input_channels, out_channels):
    weight = weight_variable()
    bias = weight_variable()
    return nn.Dense(input_channels, out_channels, weight, bias)


def weight_variable():
    return TruncatedNormal(0.02)


class Net(nn.Cell):
    """
    Lenet network
    """
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = conv(1, 6, 5)
        self.conv2 = conv(6, 16, 5)
        self.fc1 = fc_with_initialize(16*5*5, 120)
        self.fc2 = fc_with_initialize(120, 84)
        self.fc3 = fc_with_initialize(84, 10)
        self.relu = nn.ReLU()
        self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
Z
zheng-huanhuan 已提交
59
        self.flatten = nn.Flatten()
Z
zheng-huanhuan 已提交
60 61 62 63 64 65 66 67

    def construct(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
Z
zheng-huanhuan 已提交
68
        x = self.flatten(x)
Z
zheng-huanhuan 已提交
69 70 71 72 73 74 75
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.relu(x)
        x = self.fc3(x)
        return x

Z
zheng-huanhuan 已提交
76

Z
zheng-huanhuan 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
if __name__ == '__main__':
    num_classes = 10
    batch_size = 32

    sparse = False
    context.set_context(mode=context.GRAPH_MODE)
    context.set_context(device_target='Ascend')

    # create test data
    inputs_np = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
    labels_np = np.random.randint(num_classes, size=batch_size).astype(np.int32)
    if not sparse:
        labels_np = np.eye(num_classes)[labels_np].astype(np.float32)

    net = Net()

    # test fgsm
    attack = FastGradientSignMethod(net, eps=0.3)
    attack.generate(inputs_np, labels_np)

    # test train ops
    loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse)
    optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
                         0.01, 0.9)
    loss_net = WithLossCell(net, loss_fn)
    train_net = TrainOneStepCell(loss_net, optimizer)
    train_net.set_train()

    train_net(Tensor(inputs_np), Tensor(labels_np))