test_gradient_method.py 7.7 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Gradient-Attack test.
"""
import numpy as np
import pytest

import mindspore.nn as nn
from mindspore.nn import Cell
import mindspore.context as context
from mindspore.nn import SoftmaxCrossEntropyWithLogits

from mindarmour.attacks.gradient_method import FastGradientMethod
from mindarmour.attacks.gradient_method import FastGradientSignMethod
from mindarmour.attacks.gradient_method import LeastLikelyClassMethod
from mindarmour.attacks.gradient_method import RandomFastGradientMethod
from mindarmour.attacks.gradient_method import RandomFastGradientSignMethod
from mindarmour.attacks.gradient_method import RandomLeastLikelyClassMethod

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


# for user
class Net(Cell):
    """
    Construct the network of target model.

    Examples:
        >>> net = Net()
    """

    def __init__(self):
        """
        Introduce the layers used for network construction.
        """
        super(Net, self).__init__()
        self._relu = nn.ReLU()

    def construct(self, inputs):
        """
        Construct network.

        Args:
            inputs (Tensor): Input data.
        """
        out = self._relu(inputs)
        return out


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_fast_gradient_method():
    """
    Fast gradient method unit test.
    """
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(3)[label].astype(np.float32)

    attack = FastGradientMethod(Net())
    ms_adv_x = attack.generate(input_np, label)

    assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \
                                         ' must not be equal to original value.'


@pytest.mark.level0
@pytest.mark.platform_x86_gpu_inference
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_fast_gradient_method_gpu():
    """
    Fast gradient method unit test.
    """
    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(3)[label].astype(np.float32)

    attack = FastGradientMethod(Net())
    ms_adv_x = attack.generate(input_np, label)

    assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \
                                         ' must not be equal to original value.'


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_fast_gradient_method_cpu():
    """
    Fast gradient method unit test.
    """
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)

    loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    attack = FastGradientMethod(Net(), loss_fn=loss)
    ms_adv_x = attack.generate(input_np, label)

    assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \
                                         ' must not be equal to original value.'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_random_fast_gradient_method():
    """
    Random fast gradient method unit test.
    """
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(3)[label].astype(np.float32)

    attack = RandomFastGradientMethod(Net())
    ms_adv_x = attack.generate(input_np, label)

    assert np.any(ms_adv_x != input_np), 'Random fast gradient method: ' \
                                         'generate value must not be equal to' \
                                         ' original value.'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_fast_gradient_sign_method():
    """
    Fast gradient sign method unit test.
    """
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(3)[label].astype(np.float32)

    attack = FastGradientSignMethod(Net())
    ms_adv_x = attack.generate(input_np, label)

    assert np.any(ms_adv_x != input_np), 'Fast gradient sign method: generate' \
                                         ' value must not be equal to' \
                                         ' original value.'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_random_fast_gradient_sign_method():
    """
    Random fast gradient sign method unit test.
    """
    input_np = np.random.random((1, 28)).astype(np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(28)[label].astype(np.float32)

    attack = RandomFastGradientSignMethod(Net())
    ms_adv_x = attack.generate(input_np, label)

    assert np.any(ms_adv_x != input_np), 'Random fast gradient sign method: ' \
                                         'generate value must not be equal to' \
                                         ' original value.'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_least_likely_class_method():
    """
    Least likely class method unit test.
    """
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(3)[label].astype(np.float32)

    attack = LeastLikelyClassMethod(Net())
    ms_adv_x = attack.generate(input_np, label)

    assert np.any(ms_adv_x != input_np), 'Least likely class method: generate' \
                                         ' value must not be equal to' \
                                         ' original value.'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_random_least_likely_class_method():
    """
    Random least likely class method unit test.
    """
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(3)[label].astype(np.float32)

    attack = RandomLeastLikelyClassMethod(Net(), eps=0.1, alpha=0.01)
    ms_adv_x = attack.generate(input_np, label)

    assert np.any(ms_adv_x != input_np), 'Random least likely class method: ' \
                                         'generate value must not be equal to' \
                                         ' original value.'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_assert_error():
    """
    Random least likely class method unit test.
    """
    with pytest.raises(ValueError) as e:
        assert RandomLeastLikelyClassMethod(Net(), eps=0.05, alpha=0.21)
    assert str(e.value) == 'eps must be larger than alpha!'