test_mag_net.py 4.5 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Mag-net detector test.
"""
import numpy as np
import pytest

import mindspore.ops.operations as P
from mindspore.nn import Cell
from mindspore.ops.operations import TensorAdd
from mindspore import Model
from mindspore import context

from mindarmour.detectors.mag_net import ErrorBasedDetector
from mindarmour.detectors.mag_net import DivergenceBasedDetector

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


class Net(Cell):
    """
    Construct the network of target model.
    """

    def __init__(self):
        super(Net, self).__init__()
        self.add = TensorAdd()

    def construct(self, inputs):
        """
        Construct network.

        Args:
            inputs (Tensor): Input data.
        """
        return self.add(inputs, inputs)


class PredNet(Cell):
    """
    Construct the network of target model.
    """

    def __init__(self):
        super(PredNet, self).__init__()
        self.shape = P.Shape()
        self.reshape = P.Reshape()
        self._softmax = P.Softmax()

    def construct(self, inputs):
        """
        Construct network.

        Args:
            inputs (Tensor): Input data.
        """
        data = self.reshape(inputs, (self.shape(inputs)[0], -1))
        return self._softmax(data)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_mag_net():
    """
    Compute mindspore result.
    """
    np.random.seed(5)
    ori = np.random.rand(4, 4, 4).astype(np.float32)
    np.random.seed(6)
    adv = np.random.rand(4, 4, 4).astype(np.float32)
    model = Model(Net())
    detector = ErrorBasedDetector(model)
    detector.fit(ori)
    detected_res = detector.detect(adv)
    expected_value = np.array([1, 1, 1, 1])
    assert np.all(detected_res == expected_value)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_mag_net_transform():
    """
    Compute mindspore result.
    """
    np.random.seed(6)
    adv = np.random.rand(4, 4, 4).astype(np.float32)
    model = Model(Net())
    detector = ErrorBasedDetector(model)
    adv_trans = detector.transform(adv)
    assert np.any(adv_trans != adv)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_mag_net_divergence():
    """
    Compute mindspore result.
    """
    np.random.seed(5)
    ori = np.random.rand(4, 4, 4).astype(np.float32)
    np.random.seed(6)
    adv = np.random.rand(4, 4, 4).astype(np.float32)
    encoder = Model(Net())
    model = Model(PredNet())
    detector = DivergenceBasedDetector(encoder, model)
    threshold = detector.fit(ori)
    detector.set_threshold(threshold)
    detected_res = detector.detect(adv)
    expected_value = np.array([1, 0, 1, 1])
    assert np.all(detected_res == expected_value)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_mag_net_divergence_transform():
    """
    Compute mindspore result.
    """
    np.random.seed(6)
    adv = np.random.rand(4, 4, 4).astype(np.float32)
    encoder = Model(Net())
    model = Model(PredNet())
    detector = DivergenceBasedDetector(encoder, model)
    adv_trans = detector.transform(adv)
    assert np.any(adv_trans != adv)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_value_error():
    np.random.seed(6)
    adv = np.random.rand(4, 4, 4).astype(np.float32)
    encoder = Model(Net())
    model = Model(PredNet())
    detector = DivergenceBasedDetector(encoder, model, option='bad_op')
    with pytest.raises(NotImplementedError):
        assert detector.detect_diff(adv)