test_deep_fool.py 3.6 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
DeepFool-Attack test.
"""
import numpy as np
import pytest

import mindspore.ops.operations as M
from mindspore.nn import Cell
from mindspore import context
from mindspore import Tensor

from mindarmour.attacks.deep_fool import DeepFool

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


# for user
class Net(Cell):
    """
    Construct the network of target model.

    Examples:
        >>> net = Net()
    """

    def __init__(self):
        """
        Introduce the layers used for network construction.
        """
        super(Net, self).__init__()
        self._softmax = M.Softmax()

    def construct(self, inputs):
        """
        Construct network.

        Args:
            inputs (Tensor): Input data.
        """
        out = self._softmax(inputs)
        return out


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_deepfool_attack():
    """
    Deepfool-Attack test
    """
    net = Net()
    input_shape = (1, 5)
    _, classes = input_shape
    input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
    input_me = Tensor(input_np)
    true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
    attack = DeepFool(net, classes, max_iters=10, norm_level=2,
                      bounds=(0.0, 1.0))
    adv_data = attack.generate(input_np, true_labels)
    # expected adv value
    expect_value = np.asarray([[0.10300991, 0.20332647, 0.59308802, 0.59651263,
                                0.40406296]])
    assert np.allclose(adv_data, expect_value), 'mindspore deepfool_method' \
        ' implementation error, ms_adv_x != expect_value'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_deepfool_attack_inf():
    """
    Deepfool-Attack test
    """
    net = Net()
    input_shape = (1, 5)
    _, classes = input_shape
    input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
    input_me = Tensor(input_np)
    true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
    attack = DeepFool(net, classes, max_iters=10, norm_level=np.inf,
                      bounds=(0.0, 1.0))
    adv_data = attack.generate(input_np, true_labels)
    assert np.any(input_np != adv_data)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_value_error():
    net = Net()
    input_shape = (1, 5)
    _, classes = input_shape
    input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
    input_me = Tensor(input_np)
    true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
    with pytest.raises(NotImplementedError):
        # norm_level=0 is not available
        attack = DeepFool(net, classes, max_iters=10, norm_level=1,
                          bounds=(0.0, 1.0))
        assert attack.generate(input_np, true_labels)