test_genetic_attack.py 4.1 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Genetic-Attack test.
"""
import numpy as np
import pytest

import mindspore.ops.operations as M
from mindspore import Tensor
from mindspore.nn import Cell
from mindspore import context

from mindarmour.attacks.black.genetic_attack import GeneticAttack
from mindarmour.attacks.black.black_model import BlackModel


context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")


# for user
class ModelToBeAttacked(BlackModel):
    """model to be attack"""

    def __init__(self, network):
        super(ModelToBeAttacked, self).__init__()
        self._network = network

    def predict(self, inputs):
        """predict"""
        result = self._network(Tensor(inputs.astype(np.float32)))
        return result.asnumpy()


class SimpleNet(Cell):
    """
    Construct the network of target model.

    Examples:
        >>> net = SimpleNet()
    """

    def __init__(self):
        """
        Introduce the layers used for network construction.
        """
        super(SimpleNet, self).__init__()
        self._softmax = M.Softmax()

    def construct(self, inputs):
        """
        Construct network.

        Args:
            inputs (Tensor): Input data.
        """
        out = self._softmax(inputs)
        return out


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_genetic_attack():
    """
    Genetic_Attack test
    """
    batch_size = 6

    net = SimpleNet()
    inputs = np.random.rand(batch_size, 10)

    model = ModelToBeAttacked(net)
    labels = np.random.randint(low=0, high=10, size=batch_size)
    labels = np.eye(10)[labels]
    labels = labels.astype(np.float32)

    attack = GeneticAttack(model, pop_size=6, mutation_rate=0.05,
                           per_bounds=0.1, step_size=0.25, temp=0.1,
                           sparse=False)
    _, adv_data, _ = attack.generate(inputs, labels)
    assert np.any(inputs != adv_data)

@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_supplement():
    batch_size = 6

    net = SimpleNet()
    inputs = np.random.rand(batch_size, 10)

    model = ModelToBeAttacked(net)
    labels = np.random.randint(low=0, high=10, size=batch_size)
    labels = np.eye(10)[labels]
    labels = labels.astype(np.float32)

    attack = GeneticAttack(model, pop_size=6, mutation_rate=0.05,
                           per_bounds=0.1, step_size=0.25, temp=0.1,
                           adaptive=True,
                           sparse=False)
    # raise error
    _, adv_data, _ = attack.generate(inputs, labels)


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_value_error():
    """test that exception is raised for invalid labels"""
    batch_size = 6

    net = SimpleNet()
    inputs = np.random.rand(batch_size, 10)

    model = ModelToBeAttacked(net)
    labels = np.random.randint(low=0, high=10, size=batch_size)
    # labels = np.eye(10)[labels]
    labels = labels.astype(np.float32)

    attack = GeneticAttack(model, pop_size=6, mutation_rate=0.05,
                           per_bounds=0.1, step_size=0.25, temp=0.1,
                           adaptive=True,
                           sparse=False)
    # raise error
    with pytest.raises(ValueError) as e:
        assert attack.generate(inputs, labels)