mnist_attack_salt_and_pepper.py 5.4 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
import pytest
from scipy.special import softmax

from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net

from mindarmour.attacks.black.salt_and_pepper_attack import SaltAndPepperNoiseAttack
from mindarmour.attacks.black.black_model import BlackModel
from mindarmour.utils.logger import LogUtil
from mindarmour.evaluations.attack_evaluation import AttackEvaluate

from lenet5_net import LeNet5

context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

sys.path.append("..")
from data_processing import generate_mnist_dataset

LOGGER = LogUtil.get_instance()
TAG = 'Salt_and_Pepper_Attack'
LOGGER.set_level('DEBUG')


class ModelToBeAttacked(BlackModel):
    """model to be attack"""

    def __init__(self, network):
        super(ModelToBeAttacked, self).__init__()
        self._network = network

    def predict(self, inputs):
        """predict"""
        if len(inputs.shape) == 3:
            inputs = inputs[np.newaxis, :]
        result = self._network(Tensor(inputs.astype(np.float32)))
        return result.asnumpy()


@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_salt_and_pepper_attack_on_mnist():
    """
    Salt-and-Pepper-Attack test
    """
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size)

    # prediction accuracy before attack
    model = ModelToBeAttacked(net)
    batch_num = 3  # the number of batches of attacking samples
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(images), axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    LOGGER.debug(TAG, 'model input image shape is: {}'.format(np.array(test_images).shape))
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.concatenate(test_labels)
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy)

    # attacking
    is_target = False
    attack = SaltAndPepperNoiseAttack(model=model,
                                      is_targeted=is_target,
                                      sparse=True)
    if is_target:
        targeted_labels = np.random.randint(0, 10, size=len(true_labels))
        for i in range(len(true_labels)):
            if targeted_labels[i] == true_labels[i]:
                targeted_labels[i] = (targeted_labels[i] + 1) % 10
    else:
        targeted_labels = true_labels
    LOGGER.debug(TAG, 'input shape is: {}'.format(np.concatenate(test_images).shape))
    success_list, adv_data, query_list = attack.generate(
        np.concatenate(test_images), targeted_labels)
    success_list = np.arange(success_list.shape[0])[success_list]
    LOGGER.info(TAG, 'success_list: %s', success_list)
    LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list))
    adv_preds = []
    for ite_data in adv_data:
        pred_logits_adv = model.predict(ite_data)
        # rescale predict confidences into (0, 1).
        pred_logits_adv = softmax(pred_logits_adv, axis=1)
        adv_preds.extend(pred_logits_adv)
    accuracy_adv = np.mean(np.equal(np.max(adv_preds, axis=1), true_labels))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
                accuracy_adv)
    test_labels_onehot = np.eye(10)[true_labels]
    attack_evaluate = AttackEvaluate(np.concatenate(test_images),
                                     test_labels_onehot, adv_data,
                                     adv_preds, targeted=is_target,
                                     target_label=targeted_labels)
    LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
                attack_evaluate.mis_classification_rate())
    LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
                attack_evaluate.avg_conf_adv_class())
    LOGGER.info(TAG, 'The average confidence of true class is : %s',
                attack_evaluate.avg_conf_true_class())
    LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
                     'samples and adversarial samples are: %s',
                attack_evaluate.avg_lp_distance())


if __name__ == '__main__':
    test_salt_and_pepper_attack_on_mnist()