mechanisms.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Noise Mechanisms.
"""
import numpy as np

from mindspore import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P
from mindspore.common.parameter import Parameter
from mindspore.common import dtype as mstype

from mindarmour.utils._check_param import check_param_type
from mindarmour.utils._check_param import check_value_positive


class MechanismsFactory:
    """ Factory class of mechanisms"""

    def __init__(self):
        pass

    @staticmethod
    def create(policy, *args, **kwargs):
        """
        Args:
            policy(str): Noise generated strategy, could be 'Gaussian' or
                'AdaGaussian'. Default: 'AdaGaussian'.
            args(Union[float, str]): Parameters used for creating noise
                mechanisms.
            kwargs(Union[float, str]): Parameters used for creating noise
                mechanisms.

        Raises:
            NameError: `policy` must be in ['Gaussian', 'AdaGaussian'].
        Returns:
            Mechanisms, class of noise generated Mechanism.
        """
        if policy == 'Gaussian':
            return GaussianRandom(*args, **kwargs)
        if policy == 'AdaGaussian':
            return AdaGaussianRandom(*args, **kwargs)
        raise NameError("The {} is not implement, please choose "
                        "['Gaussian', 'AdaGaussian']".format(policy))


class Mechanisms(Cell):
    """
    Basic class of noise generated mechanism.
    """
    def construct(self, shape):
        """
        Construct function.
        """


class GaussianRandom(Mechanisms):
    """
    Gaussian noise generated mechanism.

    Args:
        norm_bound(float): Clipping bound for the l2 norm of the gradients.
75
            Default: 1.0.
76 77
        initial_noise_multiplier(float): Ratio of the standard deviation of
            Gaussian noise divided by the norm_bound, which will be used to
78
            calculate privacy spent. Default: 1.5.
79 80 81 82 83 84

    Returns:
        Tensor, generated noise.

    Examples:
        >>> shape = (3, 2, 4)
85 86
        >>> norm_bound = 1.0
        >>> initial_noise_multiplier = 1.5
87 88 89 90 91
        >>> net = GaussianRandom(shape, norm_bound, initial_noise_multiplier)
        >>> res = net(shape)
        >>> print(res)
    """

92
    def __init__(self, norm_bound=1.0, initial_noise_multiplier=1.5):
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        super(GaussianRandom, self).__init__()
        self._norm_bound = check_value_positive('norm_bound', norm_bound)
        self._initial_noise_multiplier = check_value_positive('initial_noise_multiplier',
                                                              initial_noise_multiplier,)
        stddev = self._norm_bound*self._initial_noise_multiplier
        self._stddev = stddev
        self._mean = 0

    def construct(self, shape):
        """
        Generated Gaussian noise.

        Args:
            shape(tuple): The shape of gradients.

        Returns:
Z
ZhidanLiu 已提交
109
            Tensor, generated noise.
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        """
        shape = check_param_type('shape', shape, tuple)
        noise = np.random.normal(self._mean, self._stddev, shape)
        return Tensor(noise, mstype.float32)


class AdaGaussianRandom(Mechanisms):
    """
    Adaptive Gaussian noise generated mechanism.

    Args:
        norm_bound(float): Clipping bound for the l2 norm of the gradients.
            Default: 1.5.
        initial_noise_multiplier(float): Ratio of the standard deviation of
            Gaussian noise divided by the norm_bound, which will be used to
            calculate privacy spent. Default: 5.0.
        alpha(float): Hyperparameter for controlling the noise decay.
            Default: 6e-4.
        decay_policy(str): Noise decay strategy include 'Step' and 'Time'.
            Default: 'Time'.

    Returns:
        Tensor, generated noise.

    Examples:
        >>> shape = (3, 2, 4)
        >>> norm_bound = 1.0
        >>> initial_noise_multiplier = 0.1
        >>> alpha = 0.5
Z
ZhidanLiu 已提交
139
        >>> decay_policy = "Time"
140 141 142 143 144 145 146
        >>> net = AdaGaussianRandom(norm_bound, initial_noise_multiplier,
        >>>                         alpha, decay_policy)
        >>> res = net(shape)
        >>> print(res)
    """

    def __init__(self, norm_bound=1.5, initial_noise_multiplier=5.0,
Z
ZhidanLiu 已提交
147
                 alpha=6e-4, decay_policy='Time'):
148 149 150 151 152 153 154 155 156 157 158 159 160 161
        super(AdaGaussianRandom, self).__init__()
        initial_noise_multiplier = check_value_positive('initial_noise_multiplier',
                                                        initial_noise_multiplier)
        initial_noise_multiplier = Tensor(np.array(initial_noise_multiplier, np.float32))
        self._initial_noise_multiplier = Parameter(initial_noise_multiplier,
                                                   name='initial_noise_multiplier')
        self._noise_multiplier = Parameter(initial_noise_multiplier,
                                           name='noise_multiplier')
        norm_bound = check_value_positive('norm_bound', norm_bound)
        self._norm_bound = Tensor(np.array(norm_bound, np.float32))

        alpha = check_param_type('alpha', alpha, float)
        self._alpha = Tensor(np.array(alpha, np.float32))

Z
ZhidanLiu 已提交
162 163 164 165
        if decay_policy not in ['Time', 'Step']:
            raise NameError("The decay_policy must be in ['Time', 'Step'], but "
                            "get {}".format(decay_policy))
        self._decay_policy = decay_policy
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        self._mean = 0.0
        self._sub = P.Sub()
        self._mul = P.Mul()
        self._add = P.TensorAdd()
        self._div = P.Div()
        self._stddev = self._update_stddev()
        self._dtype = mstype.float32

    def _update_multiplier(self):
        """ Update multiplier. """
        if self._decay_policy == 'Time':
            temp = self._div(self._initial_noise_multiplier,
                             self._noise_multiplier)
            temp = self._add(temp, self._alpha)
            temp = self._div(self._initial_noise_multiplier, temp)
            self._noise_multiplier = Parameter(temp, name='noise_multiplier')
        else:
            one = Tensor(1, self._dtype)
            temp = self._sub(one, self._alpha)
            temp = self._mul(temp, self._noise_multiplier)
            self._noise_multiplier = Parameter(temp, name='noise_multiplier')

    def _update_stddev(self):
        self._stddev = self._mul(self._noise_multiplier, self._norm_bound)
        return self._stddev

    def construct(self, shape):
        """
        Generate adaptive Gaussian noise.

        Args:
            shape(tuple): The shape of gradients.

        Returns:
Z
ZhidanLiu 已提交
200
            Tensor, generated noise.
201 202 203 204 205 206 207
        """
        shape = check_param_type('shape', shape, tuple)
        noise = np.random.normal(self._mean, self._stddev.asnumpy(),
                                 shape)
        self._update_multiplier()
        self._update_stddev()
        return Tensor(noise, mstype.float32)