test_image_transform.py 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image transform test.
"""
import numpy as np
import pytest

from mindarmour.utils.logger import LogUtil
from mindarmour.utils.image_transform import Contrast, Brightness, Blur, Noise, \
    Translate, Scale, Shear, Rotate

LOGGER = LogUtil.get_instance()
TAG = 'Image transform test'
LOGGER.set_level('INFO')


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_contrast():
    image = (np.random.rand(32, 32)*255).astype(np.float32)
    mode = 'L'
    trans = Contrast(image, mode)
    trans.random_param()
    trans_image = trans.transform()


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_brightness():
    image = (np.random.rand(32, 32)*255).astype(np.float32)
    mode = 'L'
    trans = Brightness(image, mode)
    trans.random_param()
    trans_image = trans.transform()


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_blur():
    image = (np.random.rand(32, 32)*255).astype(np.float32)
    mode = 'L'
    trans = Blur(image, mode)
    trans.random_param()
    trans_image = trans.transform()


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_noise():
    image = (np.random.rand(32, 32)*255).astype(np.float32)
    mode = 'L'
    trans = Noise(image, mode)
    trans.random_param()
    trans_image = trans.transform()


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_translate():
    image = (np.random.rand(32, 32)*255).astype(np.float32)
    mode = 'L'
    trans = Translate(image, mode)
    trans.random_param()
    trans_image = trans.transform()


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_shear():
    image = (np.random.rand(32, 32)*255).astype(np.float32)
    mode = 'L'
    trans = Shear(image, mode)
    trans.random_param()
    trans_image = trans.transform()


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_scale():
    image = (np.random.rand(32, 32)*255).astype(np.float32)
    mode = 'L'
    trans = Scale(image, mode)
    trans.random_param()
    trans_image = trans.transform()


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_rotate():
    image = (np.random.rand(32, 32)*255).astype(np.float32)
    mode = 'L'
    trans = Rotate(image, mode)
    trans.random_param()
    trans_image = trans.transform()