test_monitor.py 5.0 KB
Newer Older
J
jin-xiulang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
DP-Monitor test.
"""
import pytest
import numpy as np

import mindspore.nn as nn
import mindspore.dataset as ds
from mindspore.train import Model
import mindspore.context as context
from mindspore.model_zoo.lenet import LeNet5

26
from mindarmour.diff_privacy import PrivacyMonitorFactory
J
jin-xiulang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
from mindarmour.utils.logger import LogUtil

LOGGER = LogUtil.get_instance()
TAG = 'DP-Monitor Test'


def dataset_generator(batch_size, batches):
    data = np.random.random((batches * batch_size, 1, 32, 32)).astype(
        np.float32)
    label = np.random.randint(0, 10, batches * batch_size).astype(np.int32)
    for i in range(batches):
        yield data[i * batch_size: (i + 1) * batch_size], \
              label[i * batch_size: (i + 1) * batch_size]


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_dp_monitor():
    context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
    batch_size = 16
    batches = 128
    epochs = 1
    rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000,
                                       batch_size=batch_size,
                                       initial_noise_multiplier=0.4,
                                       noise_decay_rate=6e-5)
    suggest_epoch = rdp.max_epoch_suggest()
    LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
                suggest_epoch)
    network = LeNet5()
    net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True,
                                                reduction="mean")
    net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)

    model = Model(network, net_loss, net_opt)

    LOGGER.info(TAG, "============== Starting Training ==============")
    ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches),
                              ["data", "label"])
    ds1.set_dataset_size(batch_size * batches)
    model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False)


@pytest.mark.level0
@pytest.mark.platform_x86_gpu_inference
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_dp_monitor_gpu():
    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
    batch_size = 16
    batches = 128
    epochs = 1
    rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000,
                                       batch_size=batch_size,
                                       initial_noise_multiplier=0.4,
                                       noise_decay_rate=6e-5)
    suggest_epoch = rdp.max_epoch_suggest()
    LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
                suggest_epoch)
    network = LeNet5()
    net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True,
                                                reduction="mean")
    net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)

    model = Model(network, net_loss, net_opt)

    LOGGER.info(TAG, "============== Starting Training ==============")
    ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches),
                              ["data", "label"])
    ds1.set_dataset_size(batch_size * batches)
    model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False)


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_dp_monitor_cpu():
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    batch_size = 16
    batches = 128
    epochs = 1
    rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000,
                                       batch_size=batch_size,
                                       initial_noise_multiplier=0.4,
                                       noise_decay_rate=6e-5)
    suggest_epoch = rdp.max_epoch_suggest()
    LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
                suggest_epoch)
    network = LeNet5()
    net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True,
                                                reduction="mean")
    net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)

    model = Model(network, net_loss, net_opt)

    LOGGER.info(TAG, "============== Starting Training ==============")
    ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches),
                              ["data", "label"])
    ds1.set_dataset_size(batch_size * batches)
    model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False)