test_attacker.py 3.1 KB
Newer Older
L
liuluobin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
attacker test
"""
import pytest

import numpy as np

21
from mindarmour.privacy.evaluation.attacker import get_attack_model
L
liuluobin 已提交
22 23 24 25


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
26
@pytest.mark.platform_arm_ascend_training
L
liuluobin 已提交
27 28 29
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_get_knn_model():
30 31
    features = np.random.randint(0, 10, [100, 10])
    labels = np.random.randint(0, 2, [100])
L
liuluobin 已提交
32 33 34
    config_knn = {
        "method": "KNN",
        "params": {
35
            "n_neighbors": [3, 5, 7],
L
liuluobin 已提交
36 37
        }
    }
38
    knn_attacker = get_attack_model(features, labels, config_knn, -1)
L
liuluobin 已提交
39 40 41 42 43 44
    pred = knn_attacker.predict(features)
    assert pred is not None


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
45
@pytest.mark.platform_arm_ascend_training
L
liuluobin 已提交
46 47 48
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_get_lr_model():
49 50
    features = np.random.randint(0, 10, [100, 10])
    labels = np.random.randint(0, 2, [100])
L
liuluobin 已提交
51 52 53 54 55 56
    config_lr = {
        "method": "LR",
        "params": {
            "C": np.logspace(-4, 2, 10),
        }
    }
57
    lr_attacker = get_attack_model(features, labels, config_lr, -1)
L
liuluobin 已提交
58 59 60 61 62 63
    pred = lr_attacker.predict(features)
    assert pred is not None


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
64
@pytest.mark.platform_arm_ascend_training
L
liuluobin 已提交
65 66 67
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_get_mlp_model():
68 69
    features = np.random.randint(0, 10, [100, 10])
    labels = np.random.randint(0, 2, [100])
L
liuluobin 已提交
70 71 72 73 74 75 76 77
    config_mlpc = {
        "method": "MLP",
        "params": {
            "hidden_layer_sizes": [(64,), (32, 32)],
            "solver": ["adam"],
            "alpha": [0.0001, 0.001, 0.01],
        }
    }
78
    mlpc_attacker = get_attack_model(features, labels, config_mlpc, -1)
L
liuluobin 已提交
79 80 81 82 83 84
    pred = mlpc_attacker.predict(features)
    assert pred is not None


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
85
@pytest.mark.platform_arm_ascend_training
L
liuluobin 已提交
86 87 88
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_get_rf_model():
89 90
    features = np.random.randint(0, 10, [100, 10])
    labels = np.random.randint(0, 2, [100])
L
liuluobin 已提交
91 92 93 94 95
    config_rf = {
        "method": "RF",
        "params": {
            "n_estimators": [100],
            "max_features": ["auto", "sqrt"],
96
            "max_depth": [None, 5, 10, 20],
L
liuluobin 已提交
97 98 99 100
            "min_samples_split": [2, 5, 10],
            "min_samples_leaf": [1, 2, 4],
        }
    }
101
    rf_attacker = get_attack_model(features, labels, config_rf, -1)
L
liuluobin 已提交
102 103
    pred = rf_attacker.predict(features)
    assert pred is not None