test_nad.py 2.1 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Natural adversarial defense test.
"""
import logging

Z
zheng-huanhuan 已提交
19 20
import numpy as np
import pytest
Z
zheng-huanhuan 已提交
21
from mindspore import context
Z
zheng-huanhuan 已提交
22
from mindspore import nn
Z
zheng-huanhuan 已提交
23 24
from mindspore.nn.optim.momentum import Momentum

Z
zheng-huanhuan 已提交
25
from mock_net import Net
Z
zheng-huanhuan 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
from mindarmour.defenses.natural_adversarial_defense import \
    NaturalAdversarialDefense
from mindarmour.utils.logger import LogUtil

LOGGER = LogUtil.get_instance()
TAG = 'Nad_Test'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_nad():
    """UT for natural adversarial defense."""
    num_classes = 10
    batch_size = 16

    sparse = False
    context.set_context(mode=context.GRAPH_MODE)
    context.set_context(device_target='Ascend')

    # create test data
    inputs = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
    labels = np.random.randint(num_classes, size=batch_size).astype(np.int32)
    if not sparse:
        labels = np.eye(num_classes)[labels].astype(np.float32)

    net = Net()
    loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse)
    optimizer = Momentum(net.trainable_params(), 0.001, 0.9)

    # defense
    nad = NaturalAdversarialDefense(net, loss_fn=loss_fn, optimizer=optimizer)
    LOGGER.set_level(logging.DEBUG)
    LOGGER.debug(TAG, '---start natural adversarial defense--')
    loss = nad.defense(inputs, labels)
    LOGGER.debug(TAG, '---end natural adversarial defense--')
    assert np.any(loss >= 0.0)