提交 e94cf03f 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!891 fix lite quick start.

Merge pull request !891 from CHERY_Zzz/master
# Quick Start # Implementing an Image Classification Application
<!-- TOC --> <!-- TOC -->
- [Quick Start ](#quick-start) - [Implementing an Image Classification Application](#implementing-an-image-classification-application)
- [Overview](#overview) - [Overview](#overview)
- [Selecting a Model](#selecting-a-model) - [Selecting a Model](#selecting-a-model)
- [Converting a Model](#converting-a-model) - [Converting a Model](#converting-a-model)
...@@ -133,7 +133,7 @@ app ...@@ -133,7 +133,7 @@ app
### Configuring MindSpore Lite Dependencies ### Configuring MindSpore Lite Dependencies
When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite [source code compilation](https://www.mindspore.cn/lite/tutorial/en/master/compile.html) to generate the `libmindspore-lite.so` library file. When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite [source code compilation](https://www.mindspore.cn/lite/tutorial/en/master/build.html) to generate the `libmindspore-lite.so` library file.
In Android Studio, place the compiled `libmindspore-lite.so` library file (which can contain multiple compatible architectures) in the `app/libs/ARM64-V8a` (Arm64) or `app/libs/armeabi-v7a` (Arm32) directory of the application project. In the `build.gradle` file of the application, configure the compilation support of CMake, `arm64-v8a`, and `armeabi-v7a`.   In Android Studio, place the compiled `libmindspore-lite.so` library file (which can contain multiple compatible architectures) in the `app/libs/ARM64-V8a` (Arm64) or `app/libs/armeabi-v7a` (Arm32) directory of the application project. In the `build.gradle` file of the application, configure the compilation support of CMake, `arm64-v8a`, and `armeabi-v7a`.  
......
# 快速入门 # 实现一个图像分类应用
<!-- TOC --> <!-- TOC -->
- [快速入门](#快速入门) - [实现一个图像分类应用](#实现一个图像分类应用)
- [概述](#概述) - [概述](#概述)
- [选择模型](#选择模型) - [选择模型](#选择模型)
- [转换模型](#转换模型) - [转换模型](#转换模型)
...@@ -33,7 +33,7 @@ ...@@ -33,7 +33,7 @@
## 选择模型 ## 选择模型
MindSpore团队提供了一系列预置终端模型,你可以在应用程序中使用这些预置的终端模型。 MindSpore团队提供了一系列预置终端模型,你可以在应用程序中使用这些预置的终端模型。
MindSpore Model Zoo中图像分类模型可[在此下载]((https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms))。 MindSpore Model Zoo中图像分类模型可[在此下载](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms)
同时,你也可以使用预置模型做迁移学习,以实现自己的图像分类任务。 同时,你也可以使用预置模型做迁移学习,以实现自己的图像分类任务。
## 转换模型 ## 转换模型
...@@ -134,7 +134,7 @@ app ...@@ -134,7 +134,7 @@ app
### 配置MindSpore Lite依赖项 ### 配置MindSpore Lite依赖项
Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/lite/tutorial/zh-CN/master/compile.html)生成`libmindspore-lite.so`库文件。 Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html)生成`libmindspore-lite.so`库文件。
本示例中,bulid过程由download.gradle文件配置自动下载`libmindspore-lite.so`以及OpenCV的`libopencv_java4.so`库文件,并放置在`app/libs/arm64-v8a`目录下。 本示例中,bulid过程由download.gradle文件配置自动下载`libmindspore-lite.so`以及OpenCV的`libopencv_java4.so`库文件,并放置在`app/libs/arm64-v8a`目录下。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册