Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
docs
提交
ca1a26c8
D
docs
项目概览
MindSpore
/
docs
通知
4
Star
2
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
docs
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ca1a26c8
编写于
5月 19, 2020
作者:
L
lvmingfu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add quick start && fix notebook README
上级
291141d0
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
952 addition
and
0 deletion
+952
-0
tutorials/notebook/README.md
tutorials/notebook/README.md
+52
-0
tutorials/notebook/quick_start.ipynb
tutorials/notebook/quick_start.ipynb
+900
-0
未找到文件。
tutorials/notebook/README.md
0 → 100644
浏览文件 @
ca1a26c8
# MindSpore的教程体验
## 环境配置
### Windows系统配置方法
-
系统版本:Windows 10
-
软件配置:
[
Anaconda
](
https://www.anaconda.com/products/individual
)
,Jupyter Notebook
-
语言环境:Python3.7.X 推荐 Python3.7.5
-
MindSpore 下载地址:
[
MindSpore官网下载
](
https://www.mindspore.cn/versions
)
选择Windows版本
> Windows系统MindSpore的[具体安装教程](https://www.mindspore.cn/install/)
### Jupyter Notebook切换conda环境(Kernel Change)的配置方法
-
首先,增加Jupyter Notebook切换conda环境功能(Kernel Change)
启动Anaconda Prompt,输入命令:
```
conda install nb_conda
```
> 建议在base环境操作上述命令。
执行完毕,重启Jupyter Notebook即可完成功能添加。
-
然后,添加conda环境到Jypyter Notebook的Kernel Change中。
1.
新建一个conda环境,启动Anaconda Prompt,输入命令:
```
conda create -n {env_name} python=3.7.5
```
> env_name可以按照自己想要的环境名称自行命名。
2.
激活新环境,输入命令:
```
conda activate {env_name}
```
3.
安装ipykernel,输入命令:
```
conda install -n {env_name} ipykernel
```
> 如果添加已有环境,只需执行安装ipykernel操作即可。
执行完毕后,刷新Jupyter notebook页面点击Kernel下拉,选择Kernel Change,就能选择新添加的conda环境。
## notebook说明
| 教程名称 | 内容描述
| :----------- |:------
|
[
quick_start.ipynb
](
./quick_start.ipynb
)
| 通过该文件,你可更容易地理解各个功能模块的具体作用,学习到数据集查看及数据集图形展示方法,了解到数据集是如何通过训练生成模型;也可以通过LeNet计算图的展示,了解具体结构和参数作用;可以学习使用自定义回调函数来了解训练过程模型的变化,通过训练过程loss值与训练步数的变化图,模型精度与训练步数的变化图,更容易的理解训练对机器学习产生的意义,还能学习将训练出来的模型应用到手写图片的预测与分类上。
\ No newline at end of file
tutorials/notebook/quick_start.ipynb
0 → 100644
浏览文件 @
ca1a26c8
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# <center>手写数字分类识别入门体验教程</center>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 实现一个图片分类应用\n",
"## 概述\n",
"下面我们通过一个实际样例,带领大家体验MindSpore基础的功能,对于一般的用户而言,完成整个样例实践会持续20~30分钟。\n",
"\n",
"本例子会实现一个简单的图片分类的功能,整体流程如下:\n",
"\n",
"1、处理需要的数据集,这里使用了MNIST数据集。\n",
"\n",
"2、定义一个网络,这里我们使用LeNet网络。\n",
"\n",
"3、定义损失函数和优化器。\n",
"\n",
"4、加载数据集并进行训练,训练完成后,查看结果及保存模型文件。\n",
"\n",
"5、加载保存的模型,进行推理。\n",
"\n",
"6、验证模型,加载测试数据集和训练后的模型,验证结果精度。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"说明:<br/>你可以在这里找到完整可运行的样例代码:https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 一、训练的数据集下载"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 方法一:\n",
"从以下网址下载,并将数据包解压缩后放至Jupyter的工作目录下:<br/>训练数据集:{\"http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\", \"http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\"}\n",
"<br/>测试数据集:{\"http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\", \"http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\"}<br/>我们用下面代码查询jupyter的工作目录。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.getcwd()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"训练数据集放在----Jupyter工作目录+\\MNIST_Data\\train\\,此时train文件夹内应该包含两个文件,train-images-idx3-ubyte和train-labels-idx1-ubyte <br/>测试数据集放在----Jupyter工作目录+\\MNIST_Data\\test\\,此时test文件夹内应该包含两个文件,t10k-images-idx3-ubyte和t10k-labels-idx1-ubyte"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 方法二:\n",
"直接执行下面代码,会自动进行训练集的下载与解压,但是整个过程根据网络好坏情况会需要花费几分钟时间。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Network request module, data download module, decompression module\n",
"import urllib.request \n",
"from urllib.parse import urlparse\n",
"import gzip \n",
"\n",
"def unzipfile(gzip_path):\n",
" \"\"\"unzip dataset file\n",
" Args:\n",
" gzip_path: dataset file path\n",
" \"\"\"\n",
" open_file = open(gzip_path.replace('.gz',''), 'wb')\n",
" gz_file = gzip.GzipFile(gzip_path)\n",
" open_file.write(gz_file.read())\n",
" gz_file.close()\n",
" \n",
"def download_dataset():\n",
" \"\"\"Download the dataset from http://yann.lecun.com/exdb/mnist/.\"\"\"\n",
" print(\"******Downloading the MNIST dataset******\")\n",
" train_path = \"./MNIST_Data/train/\" \n",
" test_path = \"./MNIST_Data/test/\"\n",
" train_path_check = os.path.exists(train_path)\n",
" test_path_check = os.path.exists(test_path)\n",
" if train_path_check == False and test_path_check ==False:\n",
" os.makedirs(train_path)\n",
" os.makedirs(test_path)\n",
" train_url = {\"http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\", \"http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\"}\n",
" test_url = {\"http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\", \"http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\"}\n",
" \n",
" for url in train_url:\n",
" url_parse = urlparse(url)\n",
" # split the file name from url\n",
" file_name = os.path.join(train_path,url_parse.path.split('/')[-1])\n",
" if not os.path.exists(file_name.replace('.gz','')):\n",
" file = urllib.request.urlretrieve(url, file_name)\n",
" unzipfile(file_name)\n",
" os.remove(file_name)\n",
" \n",
" for url in test_url:\n",
" url_parse = urlparse(url)\n",
" # split the file name from url\n",
" file_name = os.path.join(test_path,url_parse.path.split('/')[-1])\n",
" if not os.path.exists(file_name.replace('.gz','')):\n",
" file = urllib.request.urlretrieve(url, file_name)\n",
" unzipfile(file_name)\n",
" os.remove(file_name)\n",
"\n",
"download_dataset()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"这样就完成了数据集的下载解压缩工作。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 二、处理MNIST数据集"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"由于我们后面会采用LeNet这样的卷积神经网络对数据集进行训练,而采用LeNet在训练数据时,对数据格式是有所要求的,所以接下来的工作需要我们先查看数据集内的数据是什么样的,这样才能构造一个针对性的数据转换函数,将数据集数据转换成符合训练要求的数据形式。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"更多的LeNet网络的介绍不在此赘述,希望详细了解LeNet网络,可以查询http://yann.lecun.com/exdb/lenet/ 。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 查看原始数据集数据"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from mindspore import context\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"import numpy as np\n",
"import mindspore.dataset as ds\n",
"\n",
"context.set_context(mode=context.GRAPH_MODE,device_target=\"CPU\") # Windows version, set to use CPU for graph calculation\n",
"train_data_path = \"./MNIST_Data/train\"\n",
"test_data_path = \"./MNIST_Data/test\"\n",
"mnist_ds = ds.MnistDataset(train_data_path) # Load training dataset\n",
"print('The type of mnist_ds:',type(mnist_ds))\n",
"print(\"Number of pictures contained in the mnist_ds:\",mnist_ds.get_dataset_size()) # 60000 pictures in total\n",
"\n",
"dic_ds = mnist_ds.create_dict_iterator() # Convert dataset to dictionary type\n",
"item = dic_ds.get_next()\n",
"img = item[\"image\"]\n",
"label = item[\"label\"]\n",
"\n",
"print(\"The item of mnist_ds:\",item.keys()) # Take a single data to view the data structure, including two keys, image and label\n",
"print(\"Tensor of image in item:\",img.shape) # View the tensor of image (28,28,1)\n",
"print(\"The label of item:\",label)\n",
"\n",
"plt.imshow(np.squeeze(img))\n",
"plt.title(\"number:%s\"%item[\"label\"])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"从上面的运行情况我们可以看到,训练数据集train-images-idx3-ubyte和train-labels-idx1-ubyte对应的是6万张图片和6万个数字下标,载入数据后经过create_dict_iterator()转换字典型的数据集,取其中的一个数据查看,这是一个key为image和label的字典,其中的image的张量(高度28,宽度28,通道1)和label为对应图片的数字。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 数据处理"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"数据集对于训练非常重要,好的数据集可以有效提高训练精度和效率。在加载数据集前,我们通常会对数据集进行一些处理。\n",
"#### 定义数据集及数据操作\n",
"我们定义一个函数create_dataset()来创建数据集。在这个函数中,我们定义好需要进行的数据增强和处理操作:\n",
"<br/>1、定义数据集。\n",
"<br/>2、定义进行数据增强和处理所需要的一些参数。\n",
"<br/>3、根据参数,生成对应的数据增强操作。\n",
"<br/>4、使用map()映射函数,将数据操作应用到数据集。\n",
"<br/>5、对生成的数据集进行处理。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Data processing module\n",
"import mindspore.dataset.transforms.vision.c_transforms as CV\n",
"import mindspore.dataset.transforms.c_transforms as C\n",
"from mindspore.dataset.transforms.vision import Inter\n",
"from mindspore.common import dtype as mstype\n",
"\n",
"\n",
"def create_dataset(data_path, batch_size=32, repeat_size=1,\n",
" num_parallel_workers=1):\n",
" \"\"\" create dataset for train or test\n",
" Args:\n",
" data_path: Data path\n",
" batch_size: The number of data records in each group\n",
" repeat_size: The number of replicated data records\n",
" num_parallel_workers: The number of parallel workers\n",
" \"\"\"\n",
" # define dataset\n",
" mnist_ds = ds.MnistDataset(data_path)\n",
"\n",
" # Define some parameters needed for data enhancement and rough justification\n",
" resize_height, resize_width = 32, 32\n",
" rescale = 1.0 / 255.0\n",
" shift = 0.0\n",
" rescale_nml = 1 / 0.3081\n",
" shift_nml = -1 * 0.1307 / 0.3081\n",
"\n",
" # According to the parameters, generate the corresponding data enhancement method\n",
" resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Resize images to (32, 32) by bilinear interpolation\n",
" rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) # normalize images\n",
" rescale_op = CV.Rescale(rescale, shift) # rescale images\n",
" hwc2chw_op = CV.HWC2CHW() # change shape from (height, width, channel) to (channel, height, width) to fit network.\n",
" type_cast_op = C.TypeCast(mstype.int32) # change data type of label to int32 to fit network\n",
"\n",
" # Using map () to apply operations to a dataset\n",
" mnist_ds = mnist_ds.map(input_columns=\"label\", operations=type_cast_op, num_parallel_workers=num_parallel_workers)\n",
" mnist_ds = mnist_ds.map(input_columns=\"image\", operations=resize_op, num_parallel_workers=num_parallel_workers)\n",
" mnist_ds = mnist_ds.map(input_columns=\"image\", operations=rescale_op, num_parallel_workers=num_parallel_workers)\n",
" mnist_ds = mnist_ds.map(input_columns=\"image\", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)\n",
" mnist_ds = mnist_ds.map(input_columns=\"image\", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)\n",
" # Process the generated dataset\n",
" buffer_size = 10000\n",
" mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script\n",
" mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)\n",
" mnist_ds = mnist_ds.repeat(repeat_size)\n",
"\n",
" return mnist_ds\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"其中<br/>\n",
"batch_size:每组包含的数据个数,现设置每组包含32个数据。\n",
"<br/>repeat_size:数据集复制的数量。\n",
"<br/>先进行shuffle、batch操作,再进行repeat操作,这样能保证1个epoch内数据不重复。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"接下来我们查看将要进行训练的数据集内容是什么样的。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"首先,查看数据集内包含多少组数据。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datas = create_dataset(train_data_path) # Process the train dataset\n",
"print('Number of groups in the dataset:',datas.get_dataset_size()) # Number of query dataset groups"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"其次,取出其中一组数据,查看包含的key,图片数据的张量,以及下标labels的值。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = datas.create_dict_iterator().get_next() # Take a set of datasets\n",
"print(data.keys())\n",
"images = data[\"image\"] # Take out the image data in this dataset\n",
"labels = data[\"label\"] # Take out the label (subscript) of this data set\n",
"print('Tensor of image:',images.shape) # Query the tensor of images in each dataset (32,1,32,32)\n",
"print('labels:',labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"最后,查看image的图像和下标对应的值。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"count = 1\n",
"for i in images:\n",
" plt.subplot(4,8,count) \n",
" plt.imshow(np.squeeze(i))\n",
" plt.title('num:%s'%labels[count-1])\n",
" plt.xticks([])\n",
" count+=1\n",
" plt.axis(\"off\")\n",
"plt.show() # Print a total of 32 pictures in the group"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"通过上述三个查询操作,看到经过变换后的图片,数据集内分成了1875组数据,每组数据中含有32张图片,每张图片像数值为32×32,数据全部准备好后,就可以进行下一步的数据训练了。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 三、构造神经网络"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"在对手写字体识别上,通常采用卷积神经网络架构(CNN)进行学习预测,最经典的属1998年由Yann LeCun创建的LeNet5架构,<br/>其中分为:<br/>1、输入层;<br/>2、卷积层C1;<br/>3、池化层S2;<br/>4、卷积层C3;<br/>5、池化层S4;<br/>6、全连接F6;<br/>7、全连接;<br/>8、全连接OUTPUT。<br/>结构示意如下图:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### LeNet5结构图"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"https://img-blog.csdnimg.cn/20190305161316701.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L21tbV9qc3c=,size_16,color_FFFFFF,t_70\" alt=\"LeNet5\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"在构建LeNet5前,我们需要对全连接层以及卷积层进行初始化。\n",
"\n",
"TruncatedNormal:参数初始化方法,MindSpore支持TruncatedNormal、Normal、Uniform等多种参数初始化方法,具体可以参考MindSpore API的mindspore.common.initializer模块说明。\n",
"\n",
"初始化示例代码如下:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import mindspore.nn as nn\n",
"from mindspore.common.initializer import TruncatedNormal\n",
"\n",
"# Initialize 2D convolution function\n",
"def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):\n",
" \"\"\"Conv layer weight initial.\"\"\"\n",
" weight = weight_variable()\n",
" return nn.Conv2d(in_channels, out_channels,\n",
" kernel_size=kernel_size, stride=stride, padding=padding,\n",
" weight_init=weight, has_bias=False, pad_mode=\"valid\")\n",
"\n",
"# Initialize full connection layer\n",
"def fc_with_initialize(input_channels, out_channels):\n",
" \"\"\"Fc layer weight initial.\"\"\"\n",
" weight = weight_variable()\n",
" bias = weight_variable()\n",
" return nn.Dense(input_channels, out_channels, weight, bias)\n",
"\n",
"# Set truncated normal distribution\n",
"def weight_variable():\n",
" \"\"\"Weight initial.\"\"\"\n",
" return TruncatedNormal(0.02)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"使用MindSpore定义神经网络需要继承mindspore.nn.cell.Cell。Cell是所有神经网络(Conv2d等)的基类。\n",
"\n",
"神经网络的各层需要预先在\\_\\_init\\_\\_()方法中定义,然后通过定义construct()方法来完成神经网络的前向构造。按照LeNet5的网络结构,定义网络各层如下:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class LeNet5(nn.Cell):\n",
" \"\"\"Lenet network structure.\"\"\"\n",
" # define the operator required\n",
" def __init__(self):\n",
" super(LeNet5, self).__init__()\n",
" self.batch_size = 32 # 32 pictures in each group\n",
" self.conv1 = conv(1, 6, 5) # Convolution layer 1, 1 channel input (1 Figure), 6 channel output (6 figures), convolution core 5 * 5\n",
" self.conv2 = conv(6, 16, 5) # Convolution layer 2,6-channel input, 16 channel output, convolution kernel 5 * 5\n",
" self.fc1 = fc_with_initialize(16 * 5 * 5, 120)\n",
" self.fc2 = fc_with_initialize(120, 84)\n",
" self.fc3 = fc_with_initialize(84, 10)\n",
" self.relu = nn.ReLU()\n",
" self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)\n",
" self.flatten = nn.Flatten()\n",
"\n",
" # use the preceding operators to construct networks\n",
" def construct(self, x):\n",
" x = self.conv1(x) # 1*32*32-->6*28*28\n",
" x = self.relu(x) # 6*28*28-->6*14*14\n",
" x = self.max_pool2d(x) # Pool layer\n",
" x = self.conv2(x) # Convolution layer\n",
" x = self.relu(x) # Function excitation layer\n",
" x = self.max_pool2d(x) # Pool layer\n",
" x = self.flatten(x) # Dimensionality reduction\n",
" x = self.fc1(x) # Full connection\n",
" x = self.relu(x) # Function excitation layer\n",
" x = self.fc2(x) # Full connection\n",
" x = self.relu(x) # Function excitation layer\n",
" x = self.fc3(x) # Full connection\n",
" return x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"构建完成后,我们将LeNet5的整体参数打印出来查看一下。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"network = LeNet5()\n",
"print(network)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"param = network.trainable_params()\n",
"param"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 四、搭建训练网络并进行训练"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"构建完成神经网络后,就可以着手进行训练网络的构建,模型训练函数为Model.train(),参数主要包含:\n",
"<br/>1、圈数epoch size(每圈需要遍历完成1875组图片);\n",
"<br/>2、数据集ds_train;\n",
"<br/>3、回调函数callbacks包含ModelCheckpoint、LossMonitor、SummaryStepckpoint_cb,Callback模型检测参数;\n",
"<br/>4、底层数据通道dataset_sink_mode,此参数默认True需设置成False,因为此功能只限于昇腾AI处理器。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Training and testing related modules\n",
"import argparse\n",
"from mindspore import Tensor\n",
"from mindspore.train.serialization import load_checkpoint, load_param_into_net\n",
"from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor,SummaryStep,Callback\n",
"from mindspore.train import Model\n",
"from mindspore.nn.metrics import Accuracy\n",
"from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits\n",
"\n",
"def train_net(model, epoch_size, mnist_path, repeat_size, ckpoint_cb,lmf_info):\n",
" \"\"\"Define the training method.\"\"\"\n",
" print(\"============== Starting Training ==============\")\n",
" # load training dataset\n",
" ds_train = create_dataset(os.path.join(mnist_path, \"train\"), 32, repeat_size)\n",
" model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(),lmf_info], dataset_sink_mode=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"自定义一个存储每一步训练的step和对应loss值的回调LMF_info函数,本函数继承了Callback类,可以自定义训练过程中的处理措施,非常方便,等训练完成后,可将数据绘图查看loss的变化情况。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Custom callback function\n",
"class LMF_info(Callback):\n",
" def step_end(self, run_context):\n",
" cb_params = run_context.original_args()\n",
" # step_ Loss dictionary for saving loss value and step number information\n",
" step_loss[\"loss_value\"].append(str(cb_params.net_outputs))\n",
" step_loss[\"step\"].append(str(cb_params.cur_step_num))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 定义损失函数及优化器\n",
"基本概念\n",
"在进行定义之前,先简单介绍损失函数及优化器的概念。\n",
"<br/>损失函数:又叫目标函数,用于衡量预测值与实际值差异的程度。深度学习通过不停地迭代来缩小损失函数的值。定义一个好的损失函数,可以有效提高模型的性能。\n",
"<br/>优化器:用于最小化损失函数,从而在训练过程中改进模型。\n",
"<br/>定义了损失函数后,可以得到损失函数关于权重的梯度。梯度用于指示优化器优化权重的方向,以提高模型性能。\n",
"<br/>定义损失函数。\n",
"<br/>MindSpore支持的损失函数有SoftmaxCrossEntropyWithLogits、L1Loss、MSELoss等。这里使用SoftmaxCrossEntropyWithLogits损失函数。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.system('del/f/s/q *.ckpt *.meta')# Clean up old run files before\n",
"lr = 0.01 # learning rate\n",
"momentum = 0.9 #\n",
"\n",
"# create the network\n",
"network = LeNet5()\n",
"\n",
"# define the optimizer\n",
"net_opt = nn.Momentum(network.trainable_params(), lr, momentum)\n",
"\n",
"\n",
"# define the loss function\n",
"net_loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')\n",
"# define the model\n",
"model = Model(network, net_loss, net_opt,metrics={\"Accuracy\":Accuracy()} )#metrics={\"Accuracy\": Accuracy()}\n",
"\n",
"\n",
"epoch_size = 1\n",
"mnist_path = \"./MNIST_Data\"\n",
"\n",
"config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=16)\n",
"# save the network model and parameters for subsequence fine-tuning\n",
"\n",
"ckpoint_cb = ModelCheckpoint(prefix=\"checkpoint_lenet\", config=config_ck)\n",
"# group layers into an object with training and evaluation features\n",
"step_loss = {\"step\":[],\"loss_value\":[]}\n",
"# step_ Loss dictionary for saving loss value and step number information\n",
"lmf_info=LMF_info()\n",
"# save the steps and loss value\n",
"repeat_size = 1\n",
"train_net(model, epoch_size, mnist_path, repeat_size, ckpoint_cb,lmf_info)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"训练完成后,能在Jupyter的工作路径上生成多个模型文件,名称具体含义checkpoint_{网络名称}-{第几个epoch}_{第几个step}.ckpt 。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 查看损失函数随着训练步数的变化情况"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"steps=step_loss[\"step\"]\n",
"loss_value = step_loss[\"loss_value\"]\n",
"steps = list(map(int,steps))\n",
"loss_value = list(map(float,loss_value))\n",
"plt.plot(steps,loss_value,color=\"red\")\n",
"plt.xlabel(\"Steps\")\n",
"plt.ylabel(\"Loss_value\")\n",
"plt.title(\"Loss function value change chart\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"从上面可以看出来大致分为三个阶段:\n",
"\n",
"阶段一:开始训练loss值在2.2上下浮动,训练收益感觉并不明显。\n",
"\n",
"阶段二:训练到某一时刻,loss值减少迅速,训练收益大幅增加。\n",
"\n",
"阶段三:loss值收敛到一定小的值后,loss值开始振荡在一个小的区间上无法趋0,再继续增加训练并无明显收益,至此训练结束。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 五、数据测试验证模型精度"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"搭建测试网络的过程主要为:<br/>1、载入模型.cptk文件中的参数param;<br/>2、将参数param载入到神经网络LeNet5中;<br/>3、载入测试数据集;<br/>4、调用函数model.eval()传入参数测试数据集ds_eval,就生成模型checkpoint_lenet-1_1875.ckpt的精度值。<br/>dataset_sink_mode表示数据集下沉模式,仅仅支持昇腾AI处理器平台,所以这里设置成False 。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def test_net(network, model, mnist_path):\n",
" \"\"\"Define the evaluation method.\"\"\"\n",
" print(\"============== Starting Testing ==============\")\n",
" # load the saved model for evaluation\n",
" param_dict = load_checkpoint(\"checkpoint_lenet-1_1875.ckpt\")\n",
" # load parameter to the network\n",
" load_param_into_net(network, param_dict)\n",
" # load testing dataset\n",
" ds_eval = create_dataset(os.path.join(mnist_path, \"test\"))\n",
" acc = model.eval(ds_eval, dataset_sink_mode=False)\n",
" print(\"============== Accuracy:{} ==============\".format(acc))\n",
"\n",
"test_net(network, model, mnist_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"经过1875步训练后生成的模型精度超过95%,模型优良。\n",
"我们可以看一下模型随着训练步数变化,精度随之变化的情况。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"acc_model_info()函数是将每125步的保存的模型,调用model.eval()函数将测试出的精度返回到步数列表和精度列表,如下:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def acc_model_info(network, model, mnist_path, model_numbers):\n",
" \"\"\"Define the plot info method\"\"\"\n",
" step_list=[]\n",
" acc_list =[]\n",
" for i in range(1,model_numbers+1):\n",
" # load the saved model for evaluation\n",
" param_dict = load_checkpoint(\"checkpoint_lenet-1_{}.ckpt\".format(str(i*125)))\n",
" # load parameter to the network\n",
" load_param_into_net(network, param_dict)\n",
" # load testing dataset\n",
" ds_eval = create_dataset(os.path.join(mnist_path, \"test\"))\n",
" acc = model.eval(ds_eval, dataset_sink_mode=False)\n",
" acc_list.append(acc['Accuracy'])\n",
" step_list.append(i*125)\n",
" return step_list,acc_list\n",
"\n",
"# Draw line chart according to training steps and model accuracy\n",
"l1,l2 = acc_model_info(network, model, mnist_path,15)\n",
"plt.xlabel(\"Model of Steps\")\n",
"plt.ylabel(\"Model accuracy\")\n",
"plt.title(\"Model accuracy variation chart\")\n",
"plt.plot(l1,l2,'red')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"从图中可以看出训练得到的模型精度变化分为三个阶段:1、缓慢上升,2、迅速上升,3、缓慢上升趋近于不到1的某个值时附近振荡,说明随着训练数据的增加,会对模型精度有着正相关的影响,但是随着精度到达一定程度,训练收益会降低。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 六、模型预测应用"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"我们尝试使用生成的模型应用到分类预测单个或者单组图片数据上,具体步骤如下:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1、需要将要测试的数据转换成适应LeNet5的数据类型。\n",
"<br/>2、提取出image的数据。\n",
"<br/>3、使用函数model.predict()预测image对应的数字。需要说明的是predict返回的是image对应0-9的概率值。\n",
"<br/>4、调用plot_pie()将预测的各数字的概率显示出来。负概率的数字会被去掉。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"载入要测试的数据集并调用create_dataset()转换成符合格式要求的数据集,并选取其中一组32张图片进行预测。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds_test = create_dataset(test_data_path).create_dict_iterator()\n",
"data = ds_test.get_next()\n",
"images = data[\"image\"]\n",
"labels = data[\"label\"] # The subscript of data picture is the standard for us to judge whether it is correct or not\n",
"\n",
"output =model.predict(Tensor(data['image']))\n",
"# The predict function returns the probability of 0-9 numbers corresponding to each picture\n",
"prb = output.asnumpy()\n",
"pred = np.argmax(output.asnumpy(),axis=1)\n",
"err_num = []\n",
"index = 1\n",
"for i in range(len(labels)):\n",
" plt.subplot(4,8,i+1)\n",
" color = 'blue' if pred[i]==labels[i] else 'red'\n",
" plt.title(\"pre:{}\".format(pred[i]),color = color)\n",
" plt.imshow(np.squeeze(images[i]))\n",
" plt.axis(\"off\")\n",
" if color =='red':\n",
" index=0\n",
" # Print out the wrong data identified by the current group\n",
" print(\"Row {}, column {} is incorrectly identified as {}, the correct value should be {}\".format(int(i/8)+1,i%8+1,pred[i],labels[i]),'\\n')\n",
"if index:\n",
" print(\"All the figures in this group are predicted correctly!\")\n",
"print(pred,\"<--Predicted figures\") # Print the numbers recognized by each group of pictures\n",
"print(labels,\"<--The right number\") # Print the subscript corresponding to each group of pictures\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"构建一个概率分析的饼图函数。\n",
"\n",
"备注:prb为上一段代码中,存储这组数对应的数字概率。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# define the pie drawing function of probability analysis\n",
"def plot_pie(prbs):\n",
" dict1={}\n",
" # Remove the negative number and build the dictionary dict1. The key is the number and the value is the probability value\n",
" for i in range(10):\n",
" if prbs[i]>0:\n",
" dict1[str(i)]=prbs[i]\n",
"\n",
" label_list = dict1.keys() # Label of each part\n",
" size = dict1.values() # Size of each part\n",
" colors = [\"red\", \"green\",\"pink\",\"blue\",\"purple\",\"orange\",\"gray\"] # Building a round cake pigment Library\n",
" color = colors[:len(size)]# Color of each part\n",
" plt.pie(size, colors=color, labels=label_list, labeldistance=1.1, autopct=\"%1.1f%%\", shadow=False, startangle=90, pctdistance=0.6)\n",
" plt.axis(\"equal\") # Set the scale size of x-axis and y-axis to be equal\n",
" plt.legend()\n",
" plt.title(\"Image classification\")\n",
" plt.show()\n",
" \n",
" \n",
"for i in range(2):\n",
" print(\"Figure {} probability of corresponding numbers [0-9]:\\n\".format(i+1),prb[i])\n",
" plot_pie(prb[i])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"以上过程就是这次手写数字分类训练的全部体验过程。"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:root] *",
"language": "python",
"name": "conda-root-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录