提交 62fb9626 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!311 Update tutorial of differential privacy.

Merge pull request !311 from ZhidanLiu/master
# <u>Differential</u> Privacy in Machine Learning
# Differential Privacy in Machine Learning
<!-- TOC -->
......@@ -86,11 +86,8 @@ TAG = 'Lenet5_train'
```python
cfg = edict({
'device_target': 'Ascend', # device used
'data_path': './MNIST_unzip', # the path of training and testing data set
'dataset_sink_mode': False, # whether deliver all training data to device one time 
'num_classes': 10, # the number of classes of model's output
'lr': 0.01, # the learning rate of model's optimizer
'lr': 0.1, # the learning rate of model's optimizer
'momentum': 0.9, # the momentum value of model's optimizer
'epoch_size': 10, # training epochs
'batch_size': 256, # batch size for training
......@@ -98,8 +95,11 @@ TAG = 'Lenet5_train'
'image_width': 32, # the width of training samples
'save_checkpoint_steps': 234, # the interval steps for saving checkpoint file of the model
'keep_checkpoint_max': 10, # the maximum number of checkpoint files would be saved
'micro_batches': 32, # the number of small batches split from an original batch
'l2_norm_bound': 1.0, # the clip bound of the gradients of model's training parameters
'device_target': 'Ascend', # device used
'data_path': './MNIST_unzip', # the path of training and testing data set
'dataset_sink_mode': False, # whether deliver all training data to device one time
'micro_batches': 16, # the number of small batches split from an original batch
'norm_clip': 1.0, # the clip bound of the gradients of model's training parameters
'initial_noise_multiplier': 1.5, # the initial multiplication coefficient of the noise added to training
# parameters' gradients
'mechanisms': 'AdaGaussian', # the method of adding noise in gradients while training
......@@ -320,13 +320,13 @@ ds_train = generate_mnist_dataset(os.path.join(cfg.data_path, "train"),
5. Display the result.
The accuracy of the LeNet model without differential privacy is 99%, and the accuracy of the LeNet model with adaptive differential privacy AdaDP is 91%.
The accuracy of the LeNet model without differential privacy is 99%, and the accuracy of the LeNet model with adaptive differential privacy AdaDP is 98%.
```
============== Starting Training ==============
...
============== Starting Testing ==============
...
============== Accuracy: 0.9115 ==============
============== Accuracy: 0.9879 ==============
```
### References
......
......@@ -72,11 +72,8 @@ TAG = 'Lenet5_train'
```python
cfg = edict({
'device_target': 'Ascend', # device used
'data_path': './MNIST_unzip', # the path of training and testing data set
'dataset_sink_mode': False, # whether deliver all training data to device one time 
'num_classes': 10, # the number of classes of model's output
'lr': 0.01, # the learning rate of model's optimizer
'lr': 0.1, # the learning rate of model's optimizer
'momentum': 0.9, # the momentum value of model's optimizer
'epoch_size': 10, # training epochs
'batch_size': 256, # batch size for training
......@@ -84,8 +81,11 @@ TAG = 'Lenet5_train'
'image_width': 32, # the width of training samples
'save_checkpoint_steps': 234, # the interval steps for saving checkpoint file of the model
'keep_checkpoint_max': 10, # the maximum number of checkpoint files would be saved
'micro_batches': 32, # the number of small batches split from an original batch
'l2_norm_bound': 1.0, # the clip bound of the gradients of model's training parameters
'device_target': 'Ascend', # device used
'data_path': './MNIST_unzip', # the path of training and testing data set
'dataset_sink_mode': False, # whether deliver all training data to device one time
'micro_batches': 16, # the number of small batches split from an original batch
'norm_clip': 1.0, # the clip bound of the gradients of model's training parameters
'initial_noise_multiplier': 1.5, # the initial multiplication coefficient of the noise added to training
# parameters' gradients
'mechanisms': 'AdaGaussian', # the method of adding noise in gradients while training
......@@ -306,13 +306,13 @@ ds_train = generate_mnist_dataset(os.path.join(cfg.data_path, "train"),
5. 结果展示。
不加差分隐私的LeNet模型精度稳定在99%,加了自适应差分隐私AdaDP的LeNet模型收敛,精度稳定在91%。
不加差分隐私的LeNet模型精度稳定在99%,加了自适应差分隐私AdaDP的LeNet模型收敛,精度稳定在98%。
```
============== Starting Training ==============
...
============== Starting Testing ==============
...
============== Accuracy: 0.9115 ==============
============== Accuracy: 0.9879 ==============
```
### 引用
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册