提交 55027189 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!865 update lite docs

Merge pull request !865 from hangq/r0.7
# Build
<!-- TOC -->
- [compilation](#compilation)
- [Linux Environment Compilation](#linux-environment-compilation)
- [Environment Requirements](#environment-requirements)
- [Compilation Options](#compilation-options)
- [Compilation Example](#compilation-example)
- [Output Description](#output-description)
- [Description of Converter's Directory Structure](#description-of-converter-directory-structure)
- [Description of Runtime and Other tools' Directory Structure](#description-of-runtime-and-other-tools-directory-structure)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_en/build.md" target="_blank"><img src="./_static/logo_source.png"></a>
This chapter introduces how to quickly compile MindSpore Lite, which includes the following modules:
| Module | Support Platform | Description |
| --- | ---- | ---- |
| converter | Linux | Model Conversion Tool |
| runtime | Linux、Android | Model Inference Framework |
| benchmark | Linux、Android | Benchmarking Tool |
| time_profiler | Linux、Android | Performance Analysis Tool |
## Linux Environment Compilation
### Environment Requirements
- The compilation environment supports Linux x86_64 only. Ubuntu 18.04.02 LTS is recommended.
- Compilation dependencies of runtime、benchmark and time_profiler:
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Android_NDK r20b](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip)
- [Git](https://git-scm.com/downloads) >= 2.28.0
- Compilation dependencies of converter:
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Android_NDK r20b](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip)
- [Git](https://git-scm.com/downloads) >= 2.28.0
- [Autoconf](http://ftp.gnu.org/gnu/autoconf/) >= 2.69
- [Libtool](https://www.gnu.org/software/libtool/) >= 2.4.6
- [LibreSSL](http://www.libressl.org/) >= 3.1.3
- [Automake](https://www.gnu.org/software/automake/) >= 1.11.6
- [Libevent](https://libevent.org) >= 2.0
- [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
> - To install and use `Android_NDK`, you need to configure environment variables. The command example is `export ANDROID_NDK={$NDK_PATH}/android-ndk-r20b`.
> - In the `build.sh` script, run the `git clone` command to obtain the code in the third-party dependency library. Ensure that the network settings of Git are correct.
### Compilation Options
MindSpore Lite provides a compilation script `build.sh` for one-click compilation, located in the root directory of MindSpore. This script can be used to compile the code of training and inference. The following describes the compilation options of MindSpore Lite.
| Parameter | Parameter Description | Value Range | Mandatory or Not |
| -------- | ----- | ---- | ---- |
| **-I** | **Selects an applicable architecture. This option is required when compile MindSpore Lite.** | **arm64, arm32, or x86_64** | **Yes** |
| -d | If this parameter is set, the debug version is compiled. Otherwise, the release version is compiled. | None | No |
| -i | If this parameter is set, incremental compilation is performed. Otherwise, full compilation is performed. | None | No |
| -j[n] | Sets the number of threads used during compilation. Otherwise, the number of threads is set to 8 by default. | Integer | No |
| -e | In the Arm architecture, select the backend operator and set the `gpu` parameter. The built-in GPU operator of the framework is compiled at the same time. | GPU | No |
| -h | Displays the compilation help information. | None | No |
> When the `-I` parameter changes, such as `-I x86_64` is converted to `-I arm64`, adding `-i` for parameter compilation does not take effect.
### Compilation Example
First, download source code from the MindSpore code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
```
Then, run the following commands in the root directory of the source code to compile MindSpore Lite of different versions:
- Debug version of the x86_64 architecture:
```bash
bash build.sh -I x86_64 -d
```
- Release version of the x86_64 architecture, with the number of threads set:
```bash
bash build.sh -I x86_64 -j32
```
- Release version of the Arm 64-bit architecture in incremental compilation mode, with the number of threads set:
```bash
bash build.sh -I arm64 -i -j32
```
- Release version of the Arm 64-bit architecture in incremental compilation mode, with the built-in GPU operator compiled:
```bash
bash build.sh -I arm64 -e gpu
```
### Output Description
After the compilation is complete, go to the `mindspore/output` directory of the source code to view the file generated after compilation. The file is divided into two parts.
- `mindspore-lite-{version}-converter-{os}.tar.gz`:Contains model conversion tool.
- `mindspore-lite-{version}-runtime-{os}-{device}.tar.gz`:Contains model inference framework、benchmarking tool and performance analysis tool.
> version: version of the output, consistent with that of the MindSpore.
>
> device: Currently divided into cpu (built-in CPU operator) and gpu (built-in CPU and GPU operator).
>
> os: Operating system on which the output will be deployed.
Execute the decompression command to obtain the compiled output:
```bash
tar -xvf mindspore-lite-{version}-converter-{os}.tar.gz
tar -xvf mindspore-lite-{version}-runtime-{os}-{device}.tar.gz
```
#### Description of Converter's Directory Structure
The conversion tool is only available under the `-I x86_64` compilation option, and the content includes the following parts:
```
|
├── mindspore-lite-{version}-converter-{os}
│ └── converter # Model conversion Ttool
│ └── third_party # Header files and libraries of third party libraries
│ ├── protobuf # Dynamic library of Protobuf
```
#### Description of Runtime and Other tools' Directory Structure
The inference framework can be obtained under `-I x86_64`, `-I arm64` and `-I arm32` compilation options, and the content includes the following parts:
- When the compilation option is `-I x86_64`:
```
|
├── mindspore-lite-{version}-runtime-x86-cpu
│ └── benchmark # Benchmarking Tool
│ └── lib # Inference framework dynamic library
│ ├── libmindspore-lite.so # Dynamic library of infernece framework in MindSpore Lite
│ └── third_party # Header files and libraries of third party libraries
│ ├── flatbuffers # Header files of FlatBuffers
│ └── include # Header files of inference framework
│ └── time_profiler # Model network layer time-consuming analysis tool
```
- When the compilation option is `-I arm64`:
```
|
├── mindspore-lite-{version}-runtime-arm64-cpu
│ └── benchmark # Benchmarking Tool
│ └── lib # Inference framework dynamic library
│ ├── libmindspore-lite.so # Dynamic library of infernece framework in MindSpore Lite
│ ├── liboptimize.so # Operator performance optimization library in MindSpore Lite
│ └── third_party # Header files and libraries of third party libraries
│ ├── flatbuffers # Header files of FlatBuffers
│ └── include # Header files of inference framework
│ └── time_profiler # Model network layer time-consuming analysis tool
```
- When the compilation option is `-I arm32`:
```
|
├── mindspore-lite-{version}-runtime-arm64-cpu
│ └── benchmark # Benchmarking Tool
│ └── lib # Inference framework dynamic library
│ ├── libmindspore-lite.so # Dynamic library of infernece framework in MindSpore Lite
│ └── third_party # Header files and libraries of third party libraries
│ ├── flatbuffers # Header files of FlatBuffers
│ └── include # Header files of inference framework
│ └── time_profiler # Model network layer time-consuming analysis tool
```
> 1. `liboptimize.so` only exists in the output package of runtime-arm64 and is only used on ARMv8.2 and CPUs that support fp16.
> 2. Compile ARM64 to get the inference framework output of arm64-cpu by default, if you add `-e gpu`, you will get the inference framework output of arm64-gpu, and the package name is `mindspore-lite-{version}-runtime-arm64-gpu.tar.gz`, compiling ARM32 is in the same way.
> 3. Before running the tools in the converter, benchmark or time_profiler directory, you need to configure environment variables, and configure the path where the dynamic libraries of MindSpore Lite and Protobuf are located to the path where the system searches for dynamic libraries. Take the CPU compiled under version 0.7.0-beta as an example: configure converter: `export LD_LIBRARY_PATH=./output/mindspore-lite-0.7.0-converter-ubuntu/third_party/protobuf/lib:${LD_LIBRARY_PATH}`; configure benchmark and time_profiler: `export LD_LIBRARY_PATH= ./output/mindspore-lite-0.7.0-runtime-x86-cpu/lib:${LD_LIBRARY_PATH}`.
# Deploy
<!-- TOC -->
- [Deployment](#deployment)
- [Environment Requirements](#environment-requirements)
- [Compilation Options](#compilation-options)
- [Output Description](#output-description)
- [Compilation Example](#compilation-example)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_en/deploy.md" target="_blank"><img src="./_static/logo_source.png"></a>
This document describes how to quickly install MindSpore Lite on the Ubuntu system.
## Environment Requirements
- The compilation environment supports Linux x86_64 only. Ubuntu 18.04.02 LTS is recommended.
- Compilation dependencies (basics):
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Android_NDK r20b](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip)
> - `Android_NDK` needs to be installed only when the Arm version is compiled. Skip this dependency when the x86_64 version is compiled.
> - To install and use `Android_NDK`, you need to configure environment variables. The command example is `export ANDROID_NDK={$NDK_PATH}/android-ndk-r20b`.
- Compilation dependencies (additional dependencies required by the MindSpore Lite model conversion tool, which is required only for compilation of the x86_64 version)
- [Autoconf](http://ftp.gnu.org/gnu/autoconf/) >= 2.69
- [Libtool](https://www.gnu.org/software/libtool/) >= 2.4.6
- [LibreSSL](http://www.libressl.org/) >= 3.1.3
- [Automake](https://www.gnu.org/software/automake/) >= 1.11.6
- [Libevent](https://libevent.org) >= 2.0
- [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
## Compilation Options
MindSpore Lite provides multiple compilation options. You can select different compilation options as required.
| Parameter | Parameter Description | Value Range | Mandatory or Not |
| -------- | ----- | ---- | ---- |
| -d | If this parameter is set, the debug version is compiled. Otherwise, the release version is compiled. | - | No |
| -i | If this parameter is set, incremental compilation is performed. Otherwise, full compilation is performed. | - | No |
| -j[n] | Sets the number of threads used during compilation. Otherwise, the number of threads is set to 8 by default. | - | No |
| -I | Selects an applicable architecture. | arm64, arm32, or x86_64 | Yes |
| -e | In the Arm architecture, select the backend operator and set the `gpu` parameter. The built-in GPU operator of the framework is compiled at the same time. | GPU | No |
| -h | Displays the compilation help information. | - | No |
> When the `-I` parameter changes, that is, the applicable architecture is changed, the `-i` parameter cannot be used for incremental compilation.
## Output Description
After the compilation is complete, go to the `mindspore/output` directory of the source code to view the file generated after compilation. The file is named `mindspore-lite-{version}-{function}-{OS}.tar.gz`. After decompression, the tool package named `mindspore-lite-{version}-{function}-{OS}` can be obtained.
> version: version of the output, consistent with that of the MindSpore.
>
> function: function of the output. `convert` indicates the output of the conversion tool and `runtime` indicates the output of the inference framework.
>
> OS: OS on which the output will be deployed.
```bash
tar -xvf mindspore-lite-{version}-{function}-{OS}.tar.gz
```
For the x86 architecture, you can obtain the output of the conversion tool and inference framework;But for the ARM architecture, you only get inference framework.
Generally, the compiled output files include the following types. The architecture selection affects the types of output files.
> For the Arm 64-bit architecture, you can obtain the output of the `arm64-cpu` inference framework. If `-e gpu` is added, you can obtain the output of the `arm64-gpu` inference framework. The compilation for arm 64-bit is the same as that for arm 32-bit.
| Directory | Description | converter | runtime |
| --- | --- | --- | --- |
| include | Inference framework header file | No | Yes |
| lib | Inference framework dynamic library | No | Yes |
| benchmark | Benchmark test tool | No | Yes |
| time_profiler | Time consumption analysis tool at the model network layer| No | Yes |
| converter | Model conversion tool | Yes | No | No |
| third_party | Header file and library of the third-party library | Yes | Yes |
Take the 0.7.0-beta version and CPU as an example. The contents of `third party` and `lib` vary depending on the architecture as follows:
- `mindspore-lite-0.7.0-converter-ubuntu`: include `protobuf` (Protobuf dynamic library).
- `mindspore-lite-0.7.0-runtime-x86-cpu`: include `flatbuffers` (FlatBuffers header file).
TODO: Add document content.
> Before running the tools in the `converter`, `benchmark`, or `time_profiler` directory, you need to configure environment variables and set the paths of the dynamic libraries of MindSpore Lite and Protobuf to the paths of the system dynamic libraries. The following uses the 0.7.0-beta version as an example: `export LD_LIBRARY_PATH=./mindspore-lite-0.7.0/lib:./mindspore-lite-0.7.0/third_party/protobuf/lib:${LD_LIBRARY_PATH}`.
## Compilation Example
First, download source code from the MindSpore code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git -b r0.7
```
Then, run the following commands in the root directory of the source code to compile MindSpore Lite of different versions:
- Debug version of the x86_64 architecture:
```bash
bash build.sh -I x86_64 -d
```
- Release version of the x86_64 architecture, with the number of threads set:
```bash
bash build.sh -I x86_64 -j32
```
- Release version of the Arm 64-bit architecture in incremental compilation mode, with the number of threads set:
```bash
bash build.sh -I arm64 -i -j32
```
- Release version of the Arm 64-bit architecture in incremental compilation mode, with the built-in GPU operator compiled:
```bash
bash build.sh -I arm64 -e gpu
```
> - In the `build.sh` script, run the `git clone` command to obtain the code in the third-party dependency library. Ensure that the network settings of Git are correct.
Take the 0.7.0-beta version as an example. After the release version of the x86_64 architecture is compiled, go to the `mindspore/output` directory and run the following decompression command to obtain the output files `include`, `lib`, `benchmark`, `time_profiler`, `converter`, and `third_party`:
```bash
tar -xvf mindspore-lite-0.7.0-converter-ubuntu.tar.gz
tar -xvf mindspore-lite-0.7.0-runtime-x86-cpu.tar.gz
```
...@@ -11,7 +11,7 @@ MindSpore Lite Tutorials ...@@ -11,7 +11,7 @@ MindSpore Lite Tutorials
:maxdepth: 1 :maxdepth: 1
:caption: Quick Start :caption: Quick Start
deploy build
quick_start/quick_start quick_start/quick_start
.. toctree:: .. toctree::
......
...@@ -16,22 +16,22 @@ ...@@ -16,22 +16,22 @@
## Overview ## Overview
The Benchmark tool is used to perform benchmark testing on a MindSpore Lite model and is implemented using the C++ language. It can not only perform quantitative analysis (performance) on the forward inference execution duration of a MindSpore Lite model, but also perform comparative error analysis (accuracy) based on the output of the specified model. The Benchmark tool is used to perform benchmark testing on a MindSpore Lite model. It can not only perform quantitative analysis (performance) on the forward inference execution duration of a MindSpore Lite model, but also perform comparative error analysis (accuracy) based on the output of the specified model.
## Environment Preparation ## Environment Preparation
To use the Benchmark tool, you need to prepare the environment as follows: To use the Benchmark tool, you need to prepare the environment as follows:
- Compilation: Install compilation dependencies and perform compilation. The code of the Benchmark tool is stored in the `mindspore/lite/tools/benchmark` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements](https://www.mindspore.cn/lite/docs/en/r0.7/deploy.html#id2) and [Compilation Example](https://www.mindspore.cn/lite/docs/en/r0.7/deploy.html#id5) in the deployment document. - Compilation: Install build dependencies and perform build. The code of the Benchmark tool is stored in the `mindspore/lite/tools/benchmark` directory of the MindSpore source code. For details about the build operations, see the [Environment Requirements](https://www.mindspore.cn/lite/tutorial/en/r0.7/build.html#environment-requirements) and [Compilation Example](https://www.mindspore.cn/lite/tutorial/en/r0.7/build.html#compilation-example) in the build document.
- Run: Obtain the `Benchmark` tool and configure environment variables. For details, see [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id4) in the deployment document. - Run: Obtain the `Benchmark` tool and configure environment variables. For details, see [Output Description](https://www.mindspore.cn/lite/tutorial/en/r0.7/build.html#output-description) in the build document.
## Parameter Description ## Parameter Description
The command used for benchmark testing based on the compiled Benchmark tool is as follows: The command used for benchmark testing based on the compiled Benchmark tool is as follows:
```bash ```bash
./benchmark --modelPath=<MODELPATH> [--accuracyThreshold=<ACCURACYTHRESHOLD>] ./benchmark [--modelPath=<MODELPATH>] [--accuracyThreshold=<ACCURACYTHRESHOLD>]
[--calibDataPath=<CALIBDATAPATH>] [--cpuBindMode=<CPUBINDMODE>] [--calibDataPath=<CALIBDATAPATH>] [--cpuBindMode=<CPUBINDMODE>]
[--device=<DEVICE>] [--help] [--inDataPath=<INDATAPATH>] [--device=<DEVICE>] [--help] [--inDataPath=<INDATAPATH>]
[--inDataType=<INDATATYPE>] [--loopCount=<LOOPCOUNT>] [--inDataType=<INDATATYPE>] [--loopCount=<LOOPCOUNT>]
...@@ -51,11 +51,8 @@ The following describes the parameters in detail. ...@@ -51,11 +51,8 @@ The following describes the parameters in detail.
| `--device=<DEVICE>` | Optional | Specifies the type of the device on which the model inference program runs. | String | CPU | CPU or GPU | | `--device=<DEVICE>` | Optional | Specifies the type of the device on which the model inference program runs. | String | CPU | CPU or GPU |
| `--help` | Optional | Displays the help information about the `benchmark` command. | - | - | - | | `--help` | Optional | Displays the help information about the `benchmark` command. | - | - | - |
| `--inDataPath=<INDATAPATH>` | Optional | Specifies the file path of the input data of the tested model. If this parameter is not set, a random value will be used. | String | Null | - | | `--inDataPath=<INDATAPATH>` | Optional | Specifies the file path of the input data of the tested model. If this parameter is not set, a random value will be used. | String | Null | - |
| `--inDataType=<INDATATYPE>` | Optional | Specifies the file type of the input data of the tested model. | String | Bin | Img: The input data is an image. Bin: The input data is a binary file.|
| `--loopCount=<LOOPCOUNT>` | Optional | Specifies the number of forward inference times of the tested model when the Benchmark tool is used for the benchmark testing. The value is a positive integer. | Integer | 10 | - | | `--loopCount=<LOOPCOUNT>` | Optional | Specifies the number of forward inference times of the tested model when the Benchmark tool is used for the benchmark testing. The value is a positive integer. | Integer | 10 | - |
| `--numThreads=<NUMTHREADS>` | Optional | Specifies the number of threads for running the model inference program. | Integer | 2 | - | | `--numThreads=<NUMTHREADS>` | Optional | Specifies the number of threads for running the model inference program. | Integer | 2 | - |
| `--omModelPath=<OMMODELPATH>` | Optional | Specifies the file path of the OM model. This parameter is optional only when the `device` type is NPU. | String | Null | - |
| `--resizeDims=<RESIZEDIMS>` | Optional | Specifies the size to be adjusted for the input data of the tested model. | String | Null | - |
| `--warmUpLoopCount=<WARMUPLOOPCOUNT>` | Optional | Specifies the number of preheating inference times of the tested model before multiple rounds of the benchmark test are executed. | Integer | 3 | - | | `--warmUpLoopCount=<WARMUPLOOPCOUNT>` | Optional | Specifies the number of preheating inference times of the tested model before multiple rounds of the benchmark test are executed. | Integer | 3 | - |
| `--fp16Priority=<FP16PIORITY>` | Optional | Specifies whether the float16 operator is preferred. | Bool | false | true, false | | `--fp16Priority=<FP16PIORITY>` | Optional | Specifies whether the float16 operator is preferred. | Bool | false | true, false |
......
...@@ -4,9 +4,9 @@ ...@@ -4,9 +4,9 @@
- [Model Conversion Tool](#model-conversion-tool) - [Model Conversion Tool](#model-conversion-tool)
- [Overview](#overview) - [Overview](#overview)
- [Linux Environment Instructions](#linux-environment-instructions)
- [Environment Preparation](#environment-preparation) - [Environment Preparation](#environment-preparation)
- [Parameter Description](#parameter-description) - [Parameter Description](#parameter-description)
- [Model Visualization](#model-visualization)
- [Example](#example) - [Example](#example)
<!-- /TOC --> <!-- /TOC -->
...@@ -15,19 +15,21 @@ ...@@ -15,19 +15,21 @@
## Overview ## Overview
MindSpore Lite provides a tool for offline model conversion. It supports conversion of multiple types of models and visualization of converted models. The converted models can be used for inference. The command line parameters contain multiple personalized options, providing a convenient conversion method for users. MindSpore Lite provides a tool for offline model conversion. It supports conversion of multiple types of models. The converted models can be used for inference. The command line parameters contain multiple personalized options, providing a convenient conversion method for users.
Currently, the following input formats are supported: MindSpore, TensorFlow Lite, Caffe, and ONNX. Currently, the following input formats are supported: MindSpore, TensorFlow Lite, Caffe, and ONNX.
## Environment Preparation ## Linux Environment Instructions
### Environment Preparation
To use the MindSpore Lite model conversion tool, you need to prepare the environment as follows: To use the MindSpore Lite model conversion tool, you need to prepare the environment as follows:
- Compilation: Install basic and additional compilation dependencies and perform compilation. The compilation version is x86_64. The code of the model conversion tool is stored in the `mindspore/lite/tools/converter` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements] (https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id2) and [Compilation Example] (https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id5) in the deployment document. - Compilation: Install basic and additional build dependencies and perform build. The build version is x86_64. The code of the model conversion tool is stored in the `mindspore/lite/tools/converter` directory of the MindSpore source code. For details about the build operations, see the [Environment Requirements](https://www.mindspore.cn/lite/tutorial/en/r0.7/build.html#environment-requirements) and [Compilation Example](https://www.mindspore.cn/lite/tutorial/en/r0.7/build.html#compilation-example) in the build document.
- Run: Obtain the `converter` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id4) in the deployment document. - Run: Obtain the `converter` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/tutorial/en/r0.7/build.html#output-description) in the build document.
## Parameter Description ### Parameter Description
You can use `./converter_lite ` to complete the conversion. In addition, you can set multiple parameters as required. You can use `./converter_lite ` to complete the conversion. In addition, you can set multiple parameters as required.
You can enter `./converter_lite --help` to obtain help information in real time. You can enter `./converter_lite --help` to obtain help information in real time.
...@@ -42,20 +44,19 @@ The following describes the parameters in detail. ...@@ -42,20 +44,19 @@ The following describes the parameters in detail.
| `--modelFile=<MODELFILE>` | Yes | Path of the input model. | - | - | | `--modelFile=<MODELFILE>` | Yes | Path of the input model. | - | - |
| `--outputFile=<OUTPUTFILE>` | Yes | Path of the output model. (If the path does not exist, a directory will be automatically created.) The suffix `.ms` can be automatically generated. | - | - | | `--outputFile=<OUTPUTFILE>` | Yes | Path of the output model. (If the path does not exist, a directory will be automatically created.) The suffix `.ms` can be automatically generated. | - | - |
| `--weightFile=<WEIGHTFILE>` | Yes (for Caffe models only) | Path of the weight file of the input model. | - | - | | `--weightFile=<WEIGHTFILE>` | Yes (for Caffe models only) | Path of the weight file of the input model. | - | - |
| `--quantType=<QUANTTYPE>` | No | Sets the training type of the model. | PostTraining: quantization after training <br>AwareTraining: perceptual quantization | - | | `--quantType=<QUANTTYPE>` | No | Sets the quant type of the model. | PostTraining: quantization after training <br>AwareTraining: perceptual quantization | - |
|`--inputInferenceType=<INPUTRINFERENCETYPE>` | No(supported by aware quant models only) | Sets the input data type of the converted model. If the type is different from the origin model, the convert tool will insert data type convert op before the model to make sure the input data type is same as the input of origin model. | FLOAT or INT8 | FLOAT |
|`--inferenceType=<INFERENCETYPE> `| No(supported by aware quant models only) | Sets the output data type of the converted model. If the type is different from the origin model, the convert tool will insert data type convert op before the model to make sure the output data type is same as the input of origin model. | FLOAT or INT8 | FLOAT |
|`--stdDev=<STDDEV>`| No(supported by aware quant models only) | Sets the standard deviation of the input data. | (0,+∞) | 128 |
|`--mean=<MEAN>`| No(supported by aware quant models only) | Sets the mean value of the input data. | [-128, 127] | -0.5 |
> - The parameter name and parameter value are separated by an equal sign (=) and no space is allowed between them. > - The parameter name and parameter value are separated by an equal sign (=) and no space is allowed between them.
> - The Caffe model is divided into two files: model structure `*.prototxt`, corresponding to the `--modelFile` parameter; model weight `*.caffemodel`, corresponding to the `--weightFile` parameter > - The Caffe model is divided into two files: model structure `*.prototxt`, corresponding to the `--modelFile` parameter; model weight `*.caffemodel`, corresponding to the `--weightFile` parameter
## Model Visualization
The model visualization tool provides a method for checking the model conversion result. You can run the JSON command to generate a `*.json` file and compare it with the original model to determine the conversion effect.
TODO: This function is under development now. ### Example
## Example First, in the root directory of the source code, run the following command to perform compilation. For details, see `build.md`.
First, in the root directory of the source code, run the following command to perform compilation. For details, see `deploy.md`.
```bash ```bash
bash build.sh -I x86_64 bash build.sh -I x86_64
``` ```
...@@ -94,15 +95,17 @@ The following describes how to use the conversion command by using several commo ...@@ -94,15 +95,17 @@ The following describes how to use the conversion command by using several commo
./converter_lite --fmk=ONNX --modelFile=model.onnx --outputFile=model ./converter_lite --fmk=ONNX --modelFile=model.onnx --outputFile=model
``` ```
- TensorFlow Lite perceptual quantization model `model_quant.tflite` - TensorFlow Lite aware quantization model `model_quant.tflite`
```bash ```bash
./converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model --quantType=AwareTraining ./converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model --quantType=AwareTraining
``` ```
- TensorFlow Lite aware quantization model `model_quant.tflite` set the input and output data type to be int8
```bash
./converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model --quantType=AwareTraining --inputInferenceType=INT8 --inferenceType=INT8
```
In the preceding scenarios, the following information is displayed, indicating that the conversion is successful. In addition, the target file `model.ms` is obtained. In the preceding scenarios, the following information is displayed, indicating that the conversion is successful. In addition, the target file `model.ms` is obtained.
``` ```
INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS! INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS!
``` ```
You can use the model visualization tool to visually check the converted MindSpore Lite model. This function is under development.
\ No newline at end of file
...@@ -20,9 +20,9 @@ The TimeProfiler tool can be used to analyze the time consumption of forward inf ...@@ -20,9 +20,9 @@ The TimeProfiler tool can be used to analyze the time consumption of forward inf
To use the TimeProfiler tool, you need to prepare the environment as follows: To use the TimeProfiler tool, you need to prepare the environment as follows:
- Compilation: Install compilation dependencies and perform compilation. The code of the TimeProfiler tool is stored in the `mindspore/lite/tools/time_profiler` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements](https://www.mindspore.cn/lite/docs/en/r0.7/deploy.html#id2) and [Compilation Example](https://www.mindspore.cn/lite/docs/en/r0.7/deploy.html#id5) in the deployment document. - Compilation: Install build dependencies and perform build. The code of the TimeProfiler tool is stored in the `mindspore/lite/tools/time_profiler` directory of the MindSpore source code. For details about the build operations, see the [Environment Requirements](https://www.mindspore.cn/lite/tutorial/en/r0.7/build.html#environment-requirements) and [Compilation Example](https://www.mindspore.cn/lite/tutorial/en/r0.7/build.html#compilation-example) in the build document.
- Run: Obtain the `time_profiler` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id4) in the deployment document. - Run: Obtain the `time_profiler` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/tutorial/en/r0.7/build.html#output-description) in the build document.
## Parameter Description ## Parameter Description
......
# 编译
<!-- TOC -->
- [编译](#编译)
- [Linux环境编译](#linux环境编译)
- [环境要求](#环境要求)
- [编译选项](#编译选项)
- [编译示例](#编译示例)
- [编译输出](#编译输出)
- [模型转换工具converter目录结构说明](#模型转换工具converter目录结构说明)
- [模型推理框架runtime及其他工具目录结构说明](#模型推理框架runtime及其他工具目录结构说明)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_zh_cn/build.md" target="_blank"><img src="./_static/logo_source.png"></a>
本章节介绍如何快速编译出MindSpore Lite,其包含的模块如下:
| 模块 | 支持平台 | 说明 |
| --- | ---- | ---- |
| converter | Linux | 模型转换工具 |
| runtime | Linux、Android | 模型推理框架 |
| benchmark | Linux、Android | 基准测试工具 |
| time_profiler | Linux、Android | 性能分析工具 |
## Linux环境编译
### 环境要求
- 系统环境:Linux x86_64,推荐使用Ubuntu 18.04.02LTS
- runtime、benchmark、time_profiler编译依赖
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Android_NDK](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip) >= r20
- [Git](https://git-scm.com/downloads) >= 2.28.0
- converter编译依赖
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Android_NDK](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip) >= r20
- [Git](https://git-scm.com/downloads) >= 2.28.0
- [Autoconf](http://ftp.gnu.org/gnu/autoconf/) >= 2.69
- [Libtool](https://www.gnu.org/software/libtool/) >= 2.4.6
- [LibreSSL](http://www.libressl.org/) >= 3.1.3
- [Automake](https://www.gnu.org/software/automake/) >= 1.11.6
- [Libevent](https://libevent.org) >= 2.0
- [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
> - 当安装完依赖项Android_NDK后,需配置环境变量:`export ANDROID_NDK={$NDK_PATH}/android-ndk-r20b`。
> - 编译脚本中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
### 编译选项
MindSpore Lite提供编译脚本`build.sh`用于一键式编译,位于MindSpore根目录下,该脚本可用于MindSpore训练及推理的编译。下面对MindSpore Lite的编译选项进行说明。
| 选项 | 参数说明 | 取值范围 | 是否必选 |
| -------- | ----- | ---- | ---- |
| **-I** | **选择适用架构,编译MindSpore Lite此选项必选** | **arm64、arm32、x86_64** | **是** |
| -d | 设置该参数,则编译Debug版本,否则编译Release版本 | 无 | 否 |
| -i | 设置该参数,则进行增量编译,否则进行全量编译 | 无 | 否 |
| -j[n] | 设定编译时所用的线程数,否则默认设定为8线程 | Integer | 否 |
| -e | 选择除CPU之外的其他内置算子类型,仅在ARM架构下适用,当前仅支持GPU | GPU | 否 |
| -h | 显示编译帮助信息 | 无 | 否 |
> 在`-I`参数变动时,如`-I x86_64`变为`-I arm64`,添加`-i`参数进行增量编译不生效。
### 编译示例
首先,在进行编译之前,需从MindSpore代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
```
然后,在源码根目录下执行如下命令,可编译不同版本的MindSpore Lite。
- 编译x86_64架构Debug版本。
```bash
bash build.sh -I x86_64 -d
```
- 编译x86_64架构Release版本,同时设定线程数。
```bash
bash build.sh -I x86_64 -j32
```
- 增量编译ARM64架构Release版本,同时设定线程数。
```bash
bash build.sh -I arm64 -i -j32
```
- 编译ARM64架构Release版本,同时编译内置的GPU算子。
```bash
bash build.sh -I arm64 -e gpu
```
### 编译输出
编译完成后,进入`mindspore/output/`目录,可查看编译后生成的文件。文件分为两部分:
- `mindspore-lite-{version}-converter-{os}.tar.gz`:包含模型转换工具converter。
- `mindspore-lite-{version}-runtime-{os}-{device}.tar.gz`:包含模型推理框架runtime、基准测试工具benchmark和性能分析工具time_profiler。
> version:输出件版本号,与所编译的分支代码对应的版本一致。
>
> device:当前分为cpu(内置CPU算子)和gpu(内置CPU和GPU算子)。
>
> os:输出件应部署的操作系统。
执行解压缩命令,获取编译后的输出件:
```bash
tar -xvf mindspore-lite-{version}-converter-{os}.tar.gz
tar -xvf mindspore-lite-{version}-runtime-{os}-{device}.tar.gz
```
#### 模型转换工具converter目录结构说明
转换工具仅在`-I x86_64`编译选项下获得,内容包括以下几部分:
```
|
├── mindspore-lite-{version}-converter-{os}
│ └── converter # 模型转换工具
│ └── third_party # 第三方库头文件和库
│ ├── protobuf # Protobuf的动态库
```
#### 模型推理框架runtime及其他工具目录结构说明
推理框架可在`-I x86_64``-I arm64``-I arm32`编译选项下获得,内容包括以下几部分:
- 当编译选项为`-I x86_64`时:
```
|
├── mindspore-lite-{version}-runtime-x86-cpu
│ └── benchmark # 基准测试工具
│ └── lib # 推理框架动态库
│ ├── libmindspore-lite.so # MindSpore Lite推理框架的动态库
│ └── third_party # 第三方库头文件和库
│ ├── flatbuffers # FlatBuffers头文件
│ └── include # 推理框架头文件
│ └── time_profiler # 模型网络层耗时分析工具
```
- 当编译选项为`-I arm64`时:
```
|
├── mindspore-lite-{version}-runtime-arm64-cpu
│ └── benchmark # 基准测试工具
│ └── lib # 推理框架动态库
│ ├── libmindspore-lite.so # MindSpore Lite推理框架的动态库
│ ├── liboptimize.so # MindSpore Lite算子性能优化库
│ └── third_party # 第三方库头文件和库
│ ├── flatbuffers # FlatBuffers头文件
│ └── include # 推理框架头文件
│ └── time_profiler # 模型网络层耗时分析工具
```
- 当编译选项为`-I arm32`时:
```
|
├── mindspore-lite-{version}-runtime-arm64-cpu
│ └── benchmark # 基准测试工具
│ └── lib # 推理框架动态库
│ ├── libmindspore-lite.so # MindSpore Lite推理框架的动态库
│ └── third_party # 第三方库头文件和库
│ ├── flatbuffers # FlatBuffers头文件
│ └── include # 推理框架头文件
│ └── time_profiler # 模型网络层耗时分析工具
```
> 1. `liboptimize.so`仅在runtime-arm64的输出包中存在,仅在ARMv8.2和支持fp16特性的CPU上使用。
> 2. 编译ARM64默认可获得arm64-cpu的推理框架输出件,若添加`-e gpu`则获得arm64-gpu的推理框架输出件,此时包名为`mindspore-lite-{version}-runtime-arm64-gpu.tar.gz`,编译ARM32同理。
> 3. 运行converter、benchmark或time_profiler目录下的工具前,都需配置环境变量,将MindSpore Lite和Protobuf的动态库所在的路径配置到系统搜索动态库的路径中。以0.7.0-beta版本下编译CPU为例:配置converter:`export LD_LIBRARY_PATH=./output/mindspore-lite-0.7.0-converter-ubuntu/third_party/protobuf/lib:${LD_LIBRARY_PATH}`;配置benchmark和time_profiler:`export LD_LIBRARY_PATH=./output/mindspore-lite-0.7.0-runtime-x86-cpu/lib:${LD_LIBRARY_PATH}`
# 部署
<!-- TOC -->
- [部署](#部署)
- [Linux环境部署](#linux环境部署)
- [环境要求](#环境要求)
- [编译选项](#编译选项)
- [输出件说明](#输出件说明)
- [编译示例](#编译示例)
- [Windows环境部署](#windows环境部署)
- [环境要求](#环境要求-1)
- [编译选项](#编译选项-1)
- [输出件说明](#输出件说明-1)
- [编译示例](#编译示例-1)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_zh_cn/deploy.md" target="_blank"><img src="./_static/logo_source.png"></a>
本文档介绍如何在Ubuntu和Windows系统上快速安装MindSpore Lite。
## Linux环境部署
### 环境要求
- 编译环境仅支持x86_64版本的Linux:推荐使用Ubuntu 18.04.02LTS
- 编译依赖(基本项)
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Android_NDK r20b](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip)
> - 仅在编译ARM版本时需要安装`Android_NDK`,编译x86_64版本可跳过此项。
> - 如果安装并使用`Android_NDK`,需配置环境变量,命令参考:`export ANDROID_NDK={$NDK_PATH}/android-ndk-r20b`。
- 编译依赖(MindSpore Lite模型转换工具所需附加项,仅编译x86_64版本时需要)
- [Autoconf](http://ftp.gnu.org/gnu/autoconf/) >= 2.69
- [Libtool](https://www.gnu.org/software/libtool/) >= 2.4.6
- [LibreSSL](http://www.libressl.org/) >= 3.1.3
- [Automake](https://www.gnu.org/software/automake/) >= 1.11.6
- [Libevent](https://libevent.org) >= 2.0
- [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
### 编译选项
MindSpore Lite提供多种编译方式,用户可根据需要选择不同的编译选项。
| 参数 | 参数说明 | 取值范围 | 是否必选 |
| -------- | ----- | ---- | ---- |
| -d | 设置该参数,则编译Debug版本,否则编译Release版本 | - | 否 |
| -i | 设置该参数,则进行增量编译,否则进行全量编译 | - | 否 |
| -j[n] | 设定编译时所用的线程数,否则默认设定为8线程 | - | 否 |
| -I | 选择适用架构 | arm64、arm32、x86_64 | 是 |
| -e | 在ARM架构下,选择后端算子,设置`gpu`参数,会同时编译框架内置的GPU算子 | gpu | 否 |
| -h | 设置该参数,显示编译帮助信息 | - | 否 |
> 在`-I`参数变动时,即切换适用架构时,无法使用`-i`参数进行增量编译。
### 输出件说明
编译完成后,进入源码的`mindspore/output`目录,可查看编译后生成的文件,命名为`mindspore-lite-{version}-{function}-{OS}.tar.gz`。解压后,即可获得编译后的工具包,名称为`mindspore-lite-{version}-{function}-{OS}`
> version:输出件版本,与所编译的MindSpore版本一致。
>
> function:输出件功能,`convert`表示为转换工具的输出件,`runtime`表示为推理框架的输出件。
>
> OS:输出件应部署的操作系统。
```bash
tar -xvf mindspore-lite-{version}-{function}-{OS}.tar.gz
```
编译x86可获得转换工具`converter`与推理框架`runtime`功能的输出件,编译ARM仅能获得推理框架`runtime`
输出件中包含以下几类子项,功能不同所含内容也会有所区别。
> 编译ARM64默认可获得`arm64-cpu`的推理框架输出件,若添加`-e gpu`则获得`arm64-gpu`的推理框架输出件,编译ARM32同理。
| 目录 | 说明 | converter | runtime |
| --- | --- | --- | --- |
| include | 推理框架头文件 | 无 | 有 |
| lib | 推理框架动态库 | 无 | 有 |
| benchmark | 基准测试工具 | 无 | 有 |
| time_profiler | 模型网络层耗时分析工具 | 无 | 有 |
| converter | 模型转换工具 | 有 | 无 |
| third_party | 第三方库头文件和库 | 有 | 有 |
以0.7.0-beta版本,CPU编译为例,不同包名下,`third party``lib`的内容不同:
- `mindspore-lite-0.7.0-converter-ubuntu`:包含`protobuf`(Protobuf的动态库)。
- `mindspore-lite-0.7.0-runtime-x86-cpu``third party`包含`flatbuffers`(FlatBuffers头文件),`lib`包含`libmindspore-lite.so`(MindSpore Lite的动态库)。
- `mindspore-lite-0.7.0-runtime-arm64-cpu``third party`包含`flatbuffers`(FlatBuffers头文件),`lib`包含`libmindspore-lite.so`(MindSpore Lite的动态库)和`liboptimize.so`
TODO:补全文件内容
> 运行converter、benchmark或time_profiler目录下的工具前,都需配置环境变量,将MindSpore Lite和Protobuf的动态库所在的路径配置到系统搜索动态库的路径中。以0.7.0-beta版本为例:`export LD_LIBRARY_PATH=./mindspore-lite-0.7.0/lib:./mindspore-lite-0.7.0/third_party/protobuf/lib:${LD_LIBRARY_PATH}`。
### 编译示例
首先,从MindSpore代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git -b r0.7
```
然后,在源码根目录下,执行如下命令,可编译不同版本的MindSpore Lite。
- 编译x86_64架构Debug版本。
```bash
bash build.sh -I x86_64 -d
```
- 编译x86_64架构Release版本,同时设定线程数。
```bash
bash build.sh -I x86_64 -j32
```
- 增量编译ARM64架构Release版本,同时设定线程数。
```bash
bash build.sh -I arm64 -i -j32
```
- 编译ARM64架构Release版本,同时编译内置的GPU算子。
```bash
bash build.sh -I arm64 -e gpu
```
> `build.sh`中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
以0.7.0-beta版本为例,x86_64架构Release版本编译完成之后,进入`mindspore/output`目录,执行如下解压缩命令,即可获取输出件`include``lib``benchmark``time_profiler``converter``third_party`
```bash
tar -xvf mindspore-lite-0.7.0-converter-ubuntu.tar.gz
tar -xvf mindspore-lite-0.7.0-runtime-x86-cpu.tar.gz
```
## Windows环境部署
### 环境要求
- 编译环境仅支持32位或64位Windows系统
- 编译依赖(基本项)
- [CMake](https://cmake.org/download/) >= 3.14.1
- [MinGW GCC](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z/download) >= 7.3.0
- [Python](https://www.python.org/) >= 3.7.5
- [Git](https://git-scm.com/downloads) >= 2.28.0
### 编译选项
MindSpore Lite的编译选项如下。
| 参数 | 参数说明 | 取值范围 | 是否必选 |
| -------- | ----- | ---- | ---- |
| lite | 设置该参数,则对Mindspore Lite工程进行编译,否则对Mindspore工程进行编译 | - | 是 |
| [n] | 设定编译时所用的线程数,否则默认设定为6线程 | - | 否 |
### 输出件说明
编译完成后,进入源码的`mindspore/output/`目录,可查看编译后生成的文件,命名为`mindspore-lite-{version}-converter-win-{process_unit}.zip`。解压后,即可获得编译后的工具包,名称为`mindspore-lite-{version}`
> version:输出件版本,与所编译的MindSpore版本一致。
> process_unit:输出件应部署的处理器类型。
### 编译示例
首先,使用git工具从MindSpore代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git -b r0.7
```
然后,使用cmd工具在源码根目录下,执行如下命令即可编译MindSpore Lite。
- 以默认线程数(6线程)编译Windows版本。
```bash
call build.bat lite
```
- 以指定线程数8编译Windows版本。
```bash
call build.bat lite 8
```
> `build.bat`中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
编译完成之后,进入`mindspore/output/`目录,解压后即可获取输出件`converter`
...@@ -11,7 +11,7 @@ MindSpore端侧教程 ...@@ -11,7 +11,7 @@ MindSpore端侧教程
:maxdepth: 1 :maxdepth: 1
:caption: 快速入门 :caption: 快速入门
deploy build
quick_start/quick_start quick_start/quick_start
.. toctree:: .. toctree::
......
...@@ -16,22 +16,22 @@ ...@@ -16,22 +16,22 @@
## 概述 ## 概述
Benchmark工具是一款可以对MindSpore Lite模型进行基准测试的工具,由C++语言编码实现。它不仅可以对MindSpore Lite模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 Benchmark工具是一款可以对MindSpore Lite模型进行基准测试的工具。它不仅可以对MindSpore Lite模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。
## 环境准备 ## 环境准备
使用Benchmark工具,需要进行如下环境准备工作。 使用Benchmark工具,需要进行如下环境准备工作。
- 编译:Benchmark工具代码在MindSpore源码的`mindspore/lite/tools/benchmark`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id5),安装编译依赖基本项,并执行编译。 - 编译:Benchmark工具代码在MindSpore源码的`mindspore/lite/tools/benchmark`目录中,参考构建文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/build.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/build.html#id4)执行编译。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id4),获得`benchmark`工具,并配置环境变量。 - 运行:参考构建文档中的[编译输出](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/build.html#id5),获得`benchmark`工具,并配置环境变量。
## 参数说明 ## 参数说明
使用编译好的Benchmark工具进行模型的基准测试时,其命令格式如下所示。 使用编译好的Benchmark工具进行模型的基准测试时,其命令格式如下所示。
```bash ```bash
./benchmark --modelPath=<MODELPATH> [--accuracyThreshold=<ACCURACYTHRESHOLD>] ./benchmark [--modelPath=<MODELPATH>] [--accuracyThreshold=<ACCURACYTHRESHOLD>]
[--calibDataPath=<CALIBDATAPATH>] [--cpuBindMode=<CPUBINDMODE>] [--calibDataPath=<CALIBDATAPATH>] [--cpuBindMode=<CPUBINDMODE>]
[--device=<DEVICE>] [--help] [--inDataPath=<INDATAPATH>] [--device=<DEVICE>] [--help] [--inDataPath=<INDATAPATH>]
[--inDataType=<INDATATYPE>] [--loopCount=<LOOPCOUNT>] [--inDataType=<INDATATYPE>] [--loopCount=<LOOPCOUNT>]
...@@ -51,11 +51,8 @@ Benchmark工具是一款可以对MindSpore Lite模型进行基准测试的工具 ...@@ -51,11 +51,8 @@ Benchmark工具是一款可以对MindSpore Lite模型进行基准测试的工具
| `--device=<DEVICE>` | 可选 | 指定模型推理程序运行的设备类型。 | String | CPU | CPU、GPU | | `--device=<DEVICE>` | 可选 | 指定模型推理程序运行的设备类型。 | String | CPU | CPU、GPU |
| `--help` | 可选 | 显示`benchmark`命令的帮助信息。 | - | - | - | | `--help` | 可选 | 显示`benchmark`命令的帮助信息。 | - | - | - |
| `--inDataPath=<INDATAPATH>` | 可选 | 指定测试模型输入数据的文件路径。如果未设置,则使用随机输入。 | String | null | - | | `--inDataPath=<INDATAPATH>` | 可选 | 指定测试模型输入数据的文件路径。如果未设置,则使用随机输入。 | String | null | - |
| `--inDataType=<INDATATYPE>` | 可选 | 指定测试模型输入数据的文件类型。 | String | bin | img:表示输入数据的文件类型为图片<br>bin:表示输入数据的类型为二进制文件 |
| `--loopCount=<LOOPCOUNT>` | 可选 | 指定Benchmark工具进行基准测试时,测试模型的前向推理运行次数,其值为正整数。 | Integer | 10 | - | | `--loopCount=<LOOPCOUNT>` | 可选 | 指定Benchmark工具进行基准测试时,测试模型的前向推理运行次数,其值为正整数。 | Integer | 10 | - |
| `--numThreads=<NUMTHREADS>` | 可选 | 指定模型推理程序运行的线程数。 | Integer | 2 | - | | `--numThreads=<NUMTHREADS>` | 可选 | 指定模型推理程序运行的线程数。 | Integer | 2 | - |
| `--omModelPath=<OMMODELPATH>` | 可选 | 指定OM模型的文件路径,此参数仅当`device`类型为NPU时可选设置。 | String | null | - |
| `--resizeDims=<RESIZEDIMS>` | 可选 | 指定测试模型输入数据需要调整的尺寸大小。 | String | null | - |
| `--warmUpLoopCount=<WARMUPLOOPCOUNT>` | 可选 | 指定测试模型在执行基准测试运行轮数前进行的模型预热推理次数。 | Integer | 3 | - | | `--warmUpLoopCount=<WARMUPLOOPCOUNT>` | 可选 | 指定测试模型在执行基准测试运行轮数前进行的模型预热推理次数。 | Integer | 3 | - |
| `--fp16Priority=<FP16PIORITY>` | 可选 | 指定是否优先使用float16算子。 | Bool | false | true, false | | `--fp16Priority=<FP16PIORITY>` | 可选 | 指定是否优先使用float16算子。 | Bool | false | true, false |
......
...@@ -7,13 +7,7 @@ ...@@ -7,13 +7,7 @@
- [Linux环境使用说明](#linux环境使用说明) - [Linux环境使用说明](#linux环境使用说明)
- [环境准备](#环境准备) - [环境准备](#环境准备)
- [参数说明](#参数说明) - [参数说明](#参数说明)
- [模型可视化](#模型可视化)
- [使用示例](#使用示例) - [使用示例](#使用示例)
- [Windows环境使用说明](#windows环境使用说明)
- [环境准备](#环境准备-1)
- [参数说明](#参数说明-1)
- [模型可视化](#模型可视化-1)
- [使用示例](#使用示例-1)
<!-- /TOC --> <!-- /TOC -->
...@@ -21,7 +15,7 @@ ...@@ -21,7 +15,7 @@
## 概述 ## 概述
MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模型转换,同时提供转化后模型可视化的功能,转换后的模型可用于推理。命令行参数包含多种个性化选项,为用户提供方便的转换途径。 MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模型转换,转换后的模型可用于推理。命令行参数包含多种个性化选项,为用户提供方便的转换途径。
目前支持的输入格式有:MindSpore、TensorFlow Lite、Caffe和ONNX。 目前支持的输入格式有:MindSpore、TensorFlow Lite、Caffe和ONNX。
...@@ -31,9 +25,9 @@ MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模 ...@@ -31,9 +25,9 @@ MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模
使用MindSpore Lite模型转换工具,需要进行如下环境准备工作。 使用MindSpore Lite模型转换工具,需要进行如下环境准备工作。
- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id5),安装编译依赖基本项与模型转换工具所需附加项,并编译x86_64版本。 - 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考构建文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/build.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/build.html#id4)编译x86_64版本。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id4),获得`converter`工具,并配置环境变量。 - 运行:参考构建文档中的[编译输出](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/build.html#id5),获得`converter`工具,并配置环境变量。
### 参数说明 ### 参数说明
...@@ -49,20 +43,19 @@ MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模 ...@@ -49,20 +43,19 @@ MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模
| `--modelFile=<MODELFILE>` | 是 | 输入模型的路径。 | - | - | | `--modelFile=<MODELFILE>` | 是 | 输入模型的路径。 | - | - |
| `--outputFile=<OUTPUTFILE>` | 是 | 输出模型的路径(不存在时将自动创建目录),不需加后缀,可自动生成`.ms`后缀。 | - | - | | `--outputFile=<OUTPUTFILE>` | 是 | 输出模型的路径(不存在时将自动创建目录),不需加后缀,可自动生成`.ms`后缀。 | - | - |
| `--weightFile=<WEIGHTFILE>` | 转换Caffe模型时必选 | 输入模型weight文件的路径。 | - | - | | `--weightFile=<WEIGHTFILE>` | 转换Caffe模型时必选 | 输入模型weight文件的路径。 | - | - |
| `--quantType=<QUANTTYPE>` | 否 | 设置模型的训练类型 | PostTraining:训练后量化<br>AwareTraining:感知量化。 | - | | `--quantType=<QUANTTYPE>` | 否 | 设置模型的量化类型。 | PostTraining:训练后量化<br>AwareTraining:感知量化。 | - |
|` --inputInferenceType=<INPUTINFERENCETYPE>` | 否 | 设置感知量化模型输入数据类型,如果和原模型不一致则转换工具会在模型前插转换算子,使得转换后的模型输入类型和inputInferenceType保持一致。 | FLOAT、INT8 | FLOAT |
| `--inferenceType=<INFERENCETYPE>` | 否 | 设置感知量化模型输出数据类型,如果和原模型不一致则转换工具会在模型前插转换算子,使得转换后的模型输出类型和inferenceType保持一致。 | FLOAT、INT8 | FLOAT |
| `--stdDev=<STDDEV> `| 否 | 感知量化模型转换时用于设置输入数据的标准差。 | (0,+∞) | 128 |
| `--mean=<MEAN>` | 否 | 感知量化模型转换时用于设置输入数据的均值。 | [-128, 127] | -0.5 |
> - 参数名和参数值之间用等号连接,中间不能有空格。 > - 参数名和参数值之间用等号连接,中间不能有空格。
> - Caffe模型一般分为两个文件:`*.prototxt`模型结构,对应`--modelFile`参数;`*.caffemodel`模型权值,对应`--weightFile`参数。 > - Caffe模型一般分为两个文件:`*.prototxt`模型结构,对应`--modelFile`参数;`*.caffemodel`模型权值,对应`--weightFile`参数。
### 模型可视化
模型可视化工具提供了一种查验模型转换结果的方法。用户可使用Json命令生成`*.json`文件,与原模型相对比,确定转化效果。
TODO: 此功能还在开发中。
### 使用示例 ### 使用示例
首先,在源码根目录下,输入命令进行编译,可参考`deploy.md` 首先,在源码根目录下,输入命令进行编译,可参考`build.md`
```bash ```bash
bash build.sh -I x86_64 bash build.sh -I x86_64
``` ```
...@@ -106,84 +99,13 @@ bash build.sh -I x86_64 ...@@ -106,84 +99,13 @@ bash build.sh -I x86_64
./converter_lite --fmk=TFLITE --modelFile=model_quant.tflite --outputFile=model --quantType=AwareTraining ./converter_lite --fmk=TFLITE --modelFile=model_quant.tflite --outputFile=model --quantType=AwareTraining
``` ```
以上几种情况下,均显示如下转换成功提示,且同时获得`model.ms`目标文件。 - 感知量化模型输入设置为int8,输出设置为int8
```
INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS!
```
你可以选择使用模型打印工具,可视化查验上述转化后生成的MindSpore Lite模型。本部分功能开发中。
## Windows环境使用说明
### 环境准备
使用MindSpore Lite模型转换工具,需要进行如下环境准备工作。
- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id7)[编译示例](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id10),安装编译依赖基本项与模型转换工具所需附加项,并编译Windows版本。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id9),获得`converter`工具,并将MinGW/bin目录下的几个依赖文件(libgcc_s_seh-1.dll、libwinpthread-1.dll、libssp-0.dll、libstdc++-6.dll)拷贝至`converter`工具的主目录。
### 参数说明
参考Linux环境模型转换工具的[参数说明](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/converter_tool.html#id4)
### 模型可视化
参考Linux环境模型转换工具的[模型可视化](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/converter_tool.html#id5)
### 使用示例
首先,使用cmd工具在源码根目录下,输入命令进行编译,可参考`deploy.md`
```bash
call build.bat lite
```
然后,设置日志打印级别为INFO。
```bash
set MSLOG=INFO
```
下面选取了几个常用示例,说明转换命令的使用方法。
- 以Caffe模型LeNet为例,执行转换命令。
```bash
call converter_lite --fmk=CAFFE --modelFile=lenet.prototxt --weightFile=lenet.caffemodel --outputFile=lenet
```
本例中,因为采用了Caffe模型,所以需要模型结构、模型权值两个输入文件。再加上其他必需的fmk类型和输出路径两个参数,即可成功执行。
结果显示为:
```
INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS!
```
这表示已经成功将Caffe模型转化为MindSpore Lite模型,获得新文件`lenet.ms`
- 以MindSpore、TensorFlow Lite、ONNX模型格式和感知量化模型为例,执行转换命令。
- MindSpore模型`model.mindir`
```bash
call converter_lite --fmk=MS --modelFile=model.mindir --outputFile=model
```
- TensorFlow Lite模型`model.tflite`
```bash
call converter_lite --fmk=TFLITE --modelFile=model.tflite --outputFile=model
```
- ONNX模型`model.onnx`
```bash ```bash
call converter_lite --fmk=ONNX --modelFile=model.onnx --outputFile=model ./converter_lite --fmk=TFLITE --modelFile=model_quant.tflite --outputFile=model --quantType=AwareTraining --inputInferenceType=INT8 --inferenceType=INT8
``` ```
- TensorFlow Lite感知量化模型`model_quant.tflite`
```bash
call converter_lite --fmk=TFLITE --modelFile=model_quant.tflite --outputFile=model --quantType=AwareTraining
```
以上几种情况下,均显示如下转换成功提示,且同时获得`model.ms`目标文件。 以上几种情况下,均显示如下转换成功提示,且同时获得`model.ms`目标文件。
``` ```
INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS! INFO [converter/converter.cc:190] Runconverter] CONVERTER RESULT: SUCCESS!
``` ```
你可以选择使用模型打印工具,可视化查验上述转化后生成的MindSpore Lite模型。本部分功能开发中。
...@@ -13,20 +13,21 @@ ...@@ -13,20 +13,21 @@
- [可变维度](#可变维度) - [可变维度](#可变维度)
- [使用示例](#使用示例-1) - [使用示例](#使用示例-1)
- [图编译](#图编译-1) - [图编译](#图编译-1)
- [使用示例](#使用示例-2)
- [输入数据](#输入数据) - [输入数据](#输入数据)
- [获取输入Tensor](#获取输入tensor) - [获取输入Tensor](#获取输入tensor)
- [数据拷贝](#数据拷贝) - [数据拷贝](#数据拷贝)
- [使用示例](#使用示例-2) - [使用示例](#使用示例-3)
- [图执行](#图执行) - [图执行](#图执行)
- [执行会话](#执行会话) - [执行会话](#执行会话)
- [绑核](#绑核) - [绑核](#绑核)
- [回调运行](#回调运行) - [回调运行](#回调运行)
- [使用示例](#使用示例-3) - [使用示例](#使用示例-4)
- [获取输出](#获取输出) - [获取输出](#获取输出)
- [获取输出Tensor](#获取输出tensor) - [获取输出Tensor](#获取输出tensor)
- [使用示例](#使用示例-4)
- [获取版本号](#获取版本号)
- [使用示例](#使用示例-5) - [使用示例](#使用示例-5)
- [获取版本号](#获取版本号)
- [使用示例](#使用示例-6)
<!-- /TOC --> <!-- /TOC -->
...@@ -119,7 +120,7 @@ if (session == nullptr) { ...@@ -119,7 +120,7 @@ if (session == nullptr) {
### 使用示例 ### 使用示例
下面代码演示如何对MindSpore Lite的输入进行Resize() 下面代码演示如何对MindSpore Lite的输入进行Resize:
```cpp ```cpp
// Assume we have created a LiteSession instance named session. // Assume we have created a LiteSession instance named session.
auto inputs = session->GetInputs(); auto inputs = session->GetInputs();
...@@ -133,6 +134,22 @@ session->Resize(inputs); ...@@ -133,6 +134,22 @@ session->Resize(inputs);
在图执行前,需要调用`LiteSession``CompileGraph`接口进行图编译,进一步解析从文件中加载的Model实例,主要进行子图切分、算子选型调度。这部分会耗费较多时间,所以建议`ListSession`创建一次,编译一次,多次执行。 在图执行前,需要调用`LiteSession``CompileGraph`接口进行图编译,进一步解析从文件中加载的Model实例,主要进行子图切分、算子选型调度。这部分会耗费较多时间,所以建议`ListSession`创建一次,编译一次,多次执行。
### 使用示例
下面代码演示如何进行图编译:
```cpp
// Assume we have created a LiteSession instance named session and a Model instance named model before.
// The methods of creating model and session can refer to "Import Model" and "Create Session" two sections.
auto ret = session->CompileGraph(model);
if (ret != RET_OK) {
std::cerr << "CompileGraph failed" << std::endl;
// session and model need to be released by users manually.
delete (session);
delete (model);
return ret;
}
```
## 输入数据 ## 输入数据
### 获取输入Tensor ### 获取输入Tensor
...@@ -318,7 +335,7 @@ if (out_data == nullptr) { ...@@ -318,7 +335,7 @@ if (out_data == nullptr) {
} }
// Print the first 10 float data or all output data of the output tensor. // Print the first 10 float data or all output data of the output tensor.
std::cout << "Output data: "; std::cout << "Output data: ";
for (size_t i = 0; i < 10 & i < out_tensor->ElementsNum(); i++) { for (size_t i = 0; i < 10 && i < out_tensor->ElementsNum(); i++) {
std::cout << " " << out_data[i]; std::cout << " " << out_data[i];
} }
std::cout << std::endl; std::cout << std::endl;
...@@ -354,6 +371,22 @@ if (out_tensor == nullptr) { ...@@ -354,6 +371,22 @@ if (out_tensor == nullptr) {
} }
``` ```
下面示例代码演示了使用`GetOutputByTensorName`接口获取输出`MSTensor`的方法:
```cpp
// We can use GetOutputTensorNames method to get all name of output tensor of model which is in order.
auto tensor_names = this->GetOutputTensorNames();
// Assume we have created a LiteSession instance named session before.
// Use output tensor name returned by GetOutputTensorNames as key
for (auto tensor_name : tensor_names) {
auto out_tensor = this->GetOutputByTensorName(tensor_name);
if (out_tensor == nullptr) {
std::cerr << "Output tensor is nullptr" << std::endl;
return -1;
}
}
```
## 获取版本号 ## 获取版本号
MindSpore Lite提供了`Version`方法可以获取版本号,包含在`include/version.h`头文件中,调用该方法可以得到版本号字符串。 MindSpore Lite提供了`Version`方法可以获取版本号,包含在`include/version.h`头文件中,调用该方法可以得到版本号字符串。
......
...@@ -20,9 +20,9 @@ TimeProfiler工具可以对MindSpore Lite模型网络层的前向推理进行耗 ...@@ -20,9 +20,9 @@ TimeProfiler工具可以对MindSpore Lite模型网络层的前向推理进行耗
使用TimeProfiler工具,需要进行如下环境准备工作。 使用TimeProfiler工具,需要进行如下环境准备工作。
- 编译:TimeProfiler工具代码在MindSpore源码的`mindspore/lite/tools/time_profiler`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id5),安装编译依赖基本项,并执行编译。 - 编译:TimeProfiler工具代码在MindSpore源码的`mindspore/lite/tools/time_profiler`目录中,参考构建文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/build.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/build.html#id4)执行编译。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id4),获得`time_profiler`工具,并配置环境变量。 - 运行:参考部署文档中的[输出输出](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/build.html#id4),获得`time_profiler`工具,并配置环境变量。
## 参数说明 ## 参数说明
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册