提交 069ab6b4 编写于 作者: Z ZhidanLiu

modify tutorial of differential privacy

上级 68c2fbd9
......@@ -78,11 +78,11 @@ from lenet5_config import mnist_cfg as cfg
parser.add_argument('--data_path', type=str, default="./_unzip",
help='path where the dataset is saved')
parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True')
parser.add_argument('--micro_batches', type=float, default=None,
parser.add_argument('--micro_batches', type=int, default=None,
help='optional, if use differential privacy, need to set micro_batches')
parser.add_argument('--l2_norm_bound', type=float, default=1,
help='optional, if use differential privacy, need to set l2_norm_bound')
parser.add_argument('--initial_noise_multiplier', type=float, default=0.001,
parser.add_argument('--initial_noise_multiplier', type=float, default=0.1,
help='optional, if use differential privacy, need to set initial_noise_multiplier')
args = parser.parse_args()
```
......@@ -271,7 +271,17 @@ ds_train = generate__dataset(os.path.join(args.data_path, "train"),
```
4. 结果展示:
4. 运行命令。
运行脚本,可在命令行输入命令:
```bash
python lenet5_dp_model_train.py --data_path='MNIST_unzip' --micro_batches=64
```
其中`lenet5_dp_model_train.py`替换成你的脚本的名字,`MNIST_unzip`替换成你解压后的数据集的路径。
5. 结果展示。
不加差分隐私的LeNet模型精度稳定在99%,加了自适应差分隐私AdaDP的LeNet模型收敛,精度稳定在96%,加了非自适应差分隐私DP[3]的LeNet模型收敛,精度稳定在94%左右。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册